

Phase prediction under Taylor hypothesis using zonal models in LQG AO control

Léonard PRENGÈRE^[1,2]

Caroline Kulcsár^[1], Henri-François Raynaud^[1], Jean-Marc Conan^[2]

Affiliations: [1]: Laboratoire Charles Fabry, Institut d'Optique Graduate School [2]: ONERA, The French Aerospace Lab

High Performance control for AO systems

- Control loop delays:
 - WaveFront Sensor (WFS): Integration and read-out time
 - Controller: commands computation time

High Performance control for AO systems

- Control loop delays:
 - WaveFront Sensor (WFS): Integration and read-out time
 - Controller: commands computation time

Delays + High performance controller — > Turbulent phase prediction

• For prediction:

• For prediction:

Dynamical Phase models:

 \rightarrow MULTILAYER ATMOSPHERE WITH FROZEN FLOW HYPOTHESIS

• For prediction:

Dynamical Phase models:

 \rightarrow MULTILAYER ATMOSPHERE WITH FROZEN FLOW HYPOTHESIS

Phase basis well adapted to Frozen Flow models:

 \rightarrow ZONAL BASIS

• For prediction:

Dynamical Phase models:

 \rightarrow MULTILAYER ATMOSPHERE WITH FROZEN FLOW HYPOTHESIS

Phase basis well adapted to Frozen Flow models:

- \rightarrow ZONAL BASIS
- Frozen Flow dynamical models in zonal basis:

$$\phi_{k+1} = h_{\mathrm{ff}} * \phi_k$$

• For prediction:

Dynamical Phase models:

 \rightarrow MULTILAYER ATMOSPHERE WITH FROZEN FLOW HYPOTHESIS

Phase basis well adapted to Frozen Flow models:

- \rightarrow ZONAL BASIS
- Frozen Flow dynamical models in zonal basis:
 Spatially invariant models

$$\phi_{k+1} = h_{\mathrm{ff}} * \phi_k$$

• For prediction:

Dynamical Phase models:

 \rightarrow MULTILAYER ATMOSPHERE WITH FROZEN FLOW HYPOTHESIS

Phase basis well adapted to Frozen Flow models:

- \rightarrow ZONAL BASIS
- Frozen Flow dynamical models in zonal basis: Spatially invariant models

$$\phi_{k+1} = h_{\mathrm{ff}} * \phi_k$$

Well suited for highly parallelizable Distributed Kalman Filter (DKF) structure

Massioni & al, JOSAA 2011

Gilles & al, JOSAA 2013

• For prediction:

Dynamical Phase models:

 \rightarrow MULTILAYER ATMOSPHERE WITH FROZEN FLOW HYPOTHESIS

Phase basis well adapted to Frozen Flow models:

- \rightarrow ZONAL BASIS
- Frozen Flow dynamical models in zonal basis: Spatially invariant models

$$\phi_{k+1} = h_{\mathrm{ff}} * \phi_k$$

Well suited for highly parallelizable Distributed Kalman Filter (DKF) structure

Massioni & al, JOSAA 2011

Gilles & al, JOSAA 2013

Frozen Flow models in zonal basis: good candidate for Linear Quadratic Gaussian (LQG) regulators towards ELT scale AO systems

• Zonal basis sampling impact on Linear Quadratic Gaussian (LQG) Regulator

• LQG regulators using Frozen Flow hypothesis with edge compensation

• Performance comparison with others controllers

• Zonal basis sampling impact on Linear Quadratic Gaussian (LQG) Regulator

• LQG regulators using Frozen Flow hypothesis with edge compensation

• Performance comparison with others controllers

• VLT NAOS-like case: Diameter = 8m, 15 x 15 actuators grid, ASO SH 14 x 14 ml, 500 Hz

- VLT NAOS-like case: Diameter = 8m, 15 x 15 actuators grid, ASO SH 14 x 14 ml, 500 Hz
- Atmosphere: Typical turbulence condition r0 = 0.1 m @ 0.55 μ m

3 turbulent layers

- VLT NAOS-like case: Diameter = 8m, 15 x 15 actuators grid, ASO SH 14 x 14 ml, 500 Hz
- Atmosphere: Typical turbulence condition r0 = 0.1 m @ 0.55 μ m

3 turbulent layers

• Controller: LQG regulator based on a boiling model in the pupil $\phi_{k+1}^{tur} = \alpha \phi_k^{tur} + v_k$

- VLT NAOS-like case: Diameter = 8m, 15 x 15 actuators grid, ASO SH 14 x 14 ml, 500 Hz
- Atmosphere: Typical turbulence condition r0 = 0.1 m @ 0.55 μ m

3 turbulent layers

• Controller: LQG regulator based on a boiling model in the pupil $\phi_{k+1}^{tur} = \alpha \phi_k^{tur} + v_k$

Sampling of one subaperture area	Strehl Ratio @ 1.65 μm
1 point / subaperture	42.2 %
4 points / subaperture	50.9 %
9 points / subaperture	51.7 %
16 points / subaperture	52.1 %

- VLT NAOS-like case: Diameter = 8m, 15 x 15 actuators grid, ASO SH 14 x 14 ml, 500 Hz
- Atmosphere: Typical turbulence condition r0 = 0.1 m @ 0.55 μ m

3 turbulent layers

• Controller: LQG regulator based on a boiling model in the pupil $\phi_{k+1}^{tur} = lpha \phi_k^{tur} + v_k$

	- 30		
	20	Sampling of one subaperture area	Strehl Ratio @ 1.65 μm
1 4	10	1 point / subaperture	42.2 %
	10	4 points / subaperture	50.9 %
	10	9 points / subaperture	51.7 %
	-20	16 points / subaperture	52.1 %
9 16	-30		

- Better sampling improves LQG controller performance
- 4 points / subaperture enough to analyse performance

• Zonal basis sampling impact on Linear Quadratic Gaussian (LQG) Regulator

• LQG regulators using Frozen Flow hypothesis with edge compensation

• Performance comparison with others controllers

• Frozen Flow hypothesis on turbulent phase model:

 $\phi_{k+1} = h_{\mathrm{ff}} * \phi_k$

• Frozen Flow hypothesis on turbulent phase model:

$$\phi_{k+1} = h_{\mathrm{ff}} * \phi_k$$

• Frozen Flow hypothesis on turbulent phase model:

$$\phi_{k+1} = h_{\mathrm{ff}} * \phi_{k} \xrightarrow[N]{\text{THE TELESCOPE PUPIL}} \phi_{k+1}^{\mathrm{Tel}} = A^{\mathrm{Tel}} \phi_{k}^{\mathrm{Tel}} + A^{\mathrm{Edge}} \phi_{k}^{\mathrm{Edge}}$$

$$\phi_{k+1}^{\mathrm{Tel}} \xrightarrow[\phi_{k}]{\text{Tel}} \xrightarrow[\phi_{k$$

• Frozen Flow hypothesis on turbulent phase model:

$$\phi_{k+1} = h_{\mathrm{ff}} * \phi_{k} \qquad \longrightarrow THE TELESCOPE PUPPL \qquad \phi_{k+1}^{\mathrm{Tel}} = A^{\mathrm{Tel}}\phi_{k}^{\mathrm{Tel}} + A^{\mathrm{Edge}}\phi_{k}^{\mathrm{Edge}}$$

$$A^{\mathrm{Tel}} : \text{Part of } h_{\mathrm{ff}} \text{ inside the telescope pupil}$$

$$A^{\mathrm{Edge}} : \text{Part of } h_{\mathrm{ff}} \text{ outside the telescope pupil}$$

$$A^{\mathrm{Edge}} : \text{Part of } h_{\mathrm{ff}} \text{ outside the telescope pupil}$$

$$A^{\mathrm{Edge}} : \text{Part of } h_{\mathrm{ff}} \text{ outside the telescope pupil}$$

$$No \text{ points outside telescope pupil} \rightarrow \phi^{\mathrm{Edge}} ?$$

 $\phi_{\mathbf{k}+1}^{\mathrm{Tel}} = A^{\mathrm{Tel}}\phi_{\mathbf{k}}^{\mathrm{Tel}}$

2nd solution:

Static MAP estimation $\hat{\phi}_k^{Edge} = M^{Map} \phi_k^{Tel}$ MAP very local, need few points of ϕ_k^{Tel}

$$\phi_{\mathbf{k}+1}^{\mathrm{Tel}} = A^{\mathrm{Tel}}\phi_{\mathbf{k}}^{\mathrm{Tel}}$$

2nd solution:

Static MAP estimation $\hat{\phi}_k^{Edge} = M^{Map} \phi_k^{Tel}$ MAP very local, need few points of ϕ_k^{Tel}

2nd solution:

Static MAP estimation $\hat{\phi}_k^{Edge} = M^{Map} \phi_k^{Tel}$ MAP very local, need few points of ϕ_k^{Tel}

New dynamical model compensating edge degradation under Taylor hypothesis

ATMOSPHERE BEHAVIOUR	BOILING (3 layers)			FROZEN FLOW (1 layer)
Cn2 Profile (%)	0.5	0.2	0.3	1
Wind Values (m/s)	7.5	12.5	15	10
Wind Direction (°)	0	120	240	0
REPRESENTATION		.2 0.5		

Performance with edge compensation

• VLT NAOS-like case: Diameter = 8m, 15 x 15 actuators grid, ASO SH 14 x 14 ml, 500 Hz

Typical turbulence condition r0 = 0.1 m @ 0.55 μ m

Multilayer atmosphere reconstruction with LQG regulator

Performance with edge compensation

• VLT NAOS-like case: Diameter = 8m, 15 x 15 actuators grid, ASO SH 14 x 14 ml, 500 Hz

Typical turbulence condition r0 = 0.1 m @ 0.55 μ m

Multilayer atmosphere reconstruction with LQG regulator

Strehl Ratio @ 1,65 µm:

Regulator & zonal basis	Edge	Atmosphere		
sampling	compensation	Boiling	Frozen Flow	
LQG, 4 points / subap area	none	52.5%	41.6%	
LQG, 4 points / subap area	MAP	53.6%	56.2%	
		0.2 0.5		

Performance with edge compensation

• VLT NAOS-like case: Diameter = 8m, 15 x 15 actuators grid, ASO SH 14 x 14 ml, 500 Hz

Typical turbulence condition r0 = 0.1 m @ 0.55 μ m

Multilayer atmosphere reconstruction with LQG regulator

Strehl Ratio @ 1,65 µm:

	Regulator & zonal basis	Edge	Atmosphere		
	sampling	compensation	Boiling	Frozen Flow	
	LQG, 4 points / subap area	none	52.5%	41.6%	
	LQG, 4 points / subap area	MAP	53.6%	56.2%	
Strong	degradation with pure Fre	ozen Flow	0.2 0.5		

• Edge compensation always effective

• Zonal basis sampling impact on Linear Quadratic Gaussian (LQG) Regulator

• LQG regulators using Frozen Flow hypothesis with edge compensation

• Performance comparison with others controllers

ATMOSPHERE BEHAVIOUR	E (;	BOILING 3 layers	G S)
Cn2 Profile (%)	0.5	0.2	0.3
Wind Values (m/s)	7.5	12.5	15
Wind Direction (°)	0	120	240
	0.2	0.3	5

ATMOSPHERE BEHAVIOUR	BOILING (3 layers)			MAI (NLY B 3 laye	OILING ers)
Cn2 Profile (%)	0.5	0.2	0.3	0.7	0.1	0.2
Wind Values (m/s)	7.5	12.5	15	10	7	15
Wind Direction (°)	0	120	240	IDE	im bo	ILING
	0.2 0.5		5		.1	0.7

ATMOSPHERE BEHAVIOUR	 (BOILING 3 layers	G s)	MAINLY BOILING (3 layers)		MAINLY FROZEN FLOW (3 layers)			FROZEN FLOW (1 layer)	
Cn2 Profile (%)	0.5	0.2	0.3	0.7	0.1	0.2	IDEM I	MAINLY B	OILING	1
Wind Values (m/s)	7.5	12.5	15	10	7	15	IDEM I	MAINLY B	OILING	10
Wind Direction (°)	0	120	240	IDE	M BO	ILING	0	60	-60	0
	0.2	0.3	5		.1	0.7		0.1	7	

ATMOSPHERE BEHAVIOUR	 (BOILING 3 layer:	G s)	MAI	NLY B 3 laye	OILING ers)	MAINL	Y FROZEN (3 layers	N FLOW)	FROZEN FLOW (1 layer)	/ FROZEN FLOW (1 layer)
Cn2 Profile (%)	0.5	0.2	0.3	0.7	0.1	0.2	IDEM I	MAINLY B	OILING	1	1
Wind Values (m/s)	7.5	12.5	15	10	7	15	IDEM I	MAINLY B	OILING	10	20
Wind Direction (°)	0	120	240	IDE	М ВО	ILING	0	60	-60	0	0
	0.2	0.3	5		.1	0.7		0.1			

• VLT NAOS-like case: Diameter = 8m, 15 x 15 actuators grid, ASO SH 14 x 14 ml, 500 Hz

Typical turbulence condition r0 = 0.1 m @ 0.55 μ m

Strehl Ratio @ 1.65 µm

Regulator	Basis & sampling	Edge Compensation
Integral action	/	/
LQG - AR2	495 Zernike modes	/
LQG –AR1 multilayer	Zonal, 16 points / subap area	MAP

• VLT NAOS-like case: Diameter = 8m, 15 x 15 actuators grid, ASO SH 14 x 14 ml, 500 Hz Typical turbulence condition r0 = 0.1 m @ 0.55 μ m

ParisTech

Regulator	Basis &	Edge		ATMOSPHERE
	sampling	Compensation	Boiling	
Integral action	/	/	50.5%	
LQG - AR2	495 Zernike modes	/	53.7%	
LQG –AR1 multilayer	Zonal, 16 points / subap area	MAP	53.9%	
			0.2 0.5 0.3	
LA C	ABORATOIRE I HARLES d		100	ONERA

THE FRENCH AEROSPACE LAB

VLT NAOS-like case: Diameter = 8m, 15 x 15 actuators grid, ASO SH 14 x 14 ml, 500 Hz
 Typical turbulence condition r0 = 0.1 m @ 0.55 μm

Strehl Ratio @ 1.65 µm

Regulator	Basis & sampling	Edge Compensation	ATMOSPHERE				
			Boiling	Mainly Boiling			
Integral action	/	/	50.5%	50.6%			
LQG - AR2	495 Zernike modes	/	53.7%	53.7%			
LQG -AR1 multilayer	Zonal, 16 points / subap area	MAP	53.9%	54.4%			
			0.2 0.5	0.1 0.7			

• VLT NAOS-like case: Diameter = 8m, 15 x 15 actuators grid, ASO SH 14 x 14 ml, 500 Hz Typical turbulence condition r0 = 0.1 m @ 0.55 μ m

Regulator	Basis &	Edge	ATMOSPHERE			
	sampling	Compensation	Boiling	Mainly Boiling	Mainly Frozen Flow	
Integral action	/	/	50.5%	50.6%	50.3%	
LQG - AR2	495 Zernike modes	/	53.7%	53.7%	53.6%	
LQG –AR1 multilayer	Zonal, 16 points / subap area	МАР	53.9%	54.4%	55.5%	

 VLT NAOS-like case: Diameter = 8m, 15 x 15 actuators grid, ASO SH 14 x 14 ml, 500 Hz Typical turbulence condition r0 = 0.1 m @ 0.55 μm Strehl Ratio @ 1.65 μm

Regulator	Basis &	Edge Compensation	ATMOSPHERE				
	sampling		Boiling	Mainly Boiling	Mainly Frozen Flow	Frozen Flow 10 m/s	
Integral action	/	/	50.5%	50.6%	50.3%	50.7%	
LQG - AR2	495 Zernike modes	/	53.7%	53.7%	53.6%	53.8%	
LQG –AR1 multilayer	Zonal, 16 points / subap area	МАР	53.9%	54.4%	55.5%	56.8%	
			0,5	0.7	0.1 0.7		

0.2

• VLT NAOS-like case: Diameter = 8m, 15 x 15 actuators grid, ASO SH 14 x 14 ml, 500 Hz Typical turbulence condition r0 = 0.1 m @ 0.55 μ m

Regulator	Basis & sampling	Edge Compensation	ATMOSPHERE					
			Boiling	Mainly Boiling	Mainly Frozen Flow	Frozen Flow 10 m/s	Frozen Flow 20 m/s	
Integral action	/	/	50.5%	50.6%	50.3%	50.7%	46.4%	
LQG - AR2	495 Zernike modes	/	53.7%	53.7%	53.6%	53.8%	51.8%	
LQG –AR1 multilayer	Zonal, 16 points / subap area	МАР	53.9%	54.4%	55.5%	56.8%	56.8%	

Strehl Ratio @ 1.65 µm

• VLT NAOS-like case: Diameter = 8m, 15 x 15 actuators grid, ASO SH 14 x 14 ml, 500 Hz Typical turbulence condition r0 = 0.1 m @ 0.55 μ m

Regulator	Basis & sampling	Edge Compensation	ATMOSPHERE					
			Boiling	Mainly Boiling	Mainly Frozen Flow	Frozen Flow 10 m/s	Frozen Flow 20 m/s	
Integral action	/	/	50.5%	50.6%	50.3%	50.7%	46.4%	
LQG - AR2	495 Zernike modes	/	53.7%	53.7%	53.6%	53.8%	51.8%	
LQG –AR1 multilayer	Zonal, 16 points / subap area	МАР	53.9%	54.4%	55.5%	56.8%	56.8%	

Strehl Ratio @ 1.65 µm

LQG-KF with Frozen Flow models and MAP compensation is efficient

• Multilayer Frozen Flow models:

+ multilayer atmosphere model \rightarrow High performance control

- Multilayer Frozen Flow models:
 - + multilayer atmosphere model \rightarrow High performance control
 - + Highly parallelizable structure \rightarrow Fast and well adapted to ELT scale AO

- Multilayer Frozen Flow models:
 - + multilayer atmosphere model \rightarrow High performance control
 - + Highly parallelizable structure \rightarrow Fast and well adapted to ELT scale AO
 - Edge effects \rightarrow deeply affects control performance of LQG regulators

- Multilayer Frozen Flow models:
 - + multilayer atmosphere model \rightarrow High performance control
 - + Highly parallelizable structure \rightarrow Fast and well adapted to ELT scale AO
 - Edge effects \rightarrow deeply affects control performance of LQG regulators
 - + Very local edge compensation with MAP \rightarrow Highly parallelizable and efficient

- Multilayer Frozen Flow models:
 - + multilayer atmosphere model \rightarrow High performance control
 - + Highly parallelizable structure \rightarrow Fast and well adapted to ELT scale AO
 - Edge effects \rightarrow deeply affects control performance of LQG regulators
 - + Very local edge compensation with MAP \rightarrow Highly parallelizable and efficient

LQG regulator with multilayer Frozen Flow models and edge compensation with MAP:
 + Competitive and better than AR2 Zernike LQG regulator for any atmosphere behavior

- Multilayer Frozen Flow models:
 - + multilayer atmosphere model \rightarrow High performance control
 - + Highly parallelizable structure \rightarrow Fast and well adapted to ELT scale AO
 - Edge effects \rightarrow deeply affects control performance of LQG regulators
 - + Very local edge compensation with MAP \rightarrow Highly parallelizable and efficient

- LQG regulator with multilayer Frozen Flow models and edge compensation with MAP:
 + Competitive and better than AR2 Zernike LQG regulator for any atmosphere behavior
 - Only tested with full knowledge of atmosphere and wind profiles

• Robustness in performance in the presence of model errors

- Robustness in performance in the presence of model errors
- Extension of control strategy and edge degradation study to ELT-sized systems

- Robustness in performance in the presence of model errors
- Extension of control strategy and edge degradation study to ELT-sized systems
- LQG with edge compensation efficient with Frozen Flow atmosphere:
 + well adapted to high altitude layers with strong wind
 + interesting for satellites tracking

