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Delays + High performance controller              Turbulent phase prediction    
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• For predicton:  

  Dynamical Phase models:

    → MULTILAYER ATMOSPHERE WITH FROZEN FLOW HYPOTHESIS

   Phase basis well adapted to Frozen Flow models:
    →  ZONAL BASIS

• Frozen Flow dynamical models in zonal basis:

  Spatally invariant models

  Well suited for highly parallelizable Distributed Kalman Filter (DKF) structure 

     Frozen Flow models in zonal basis: good candidate for Linear 
Quadratic Gaussian (LQG) regulators towards ELT scale AO systems

Massioni & al, JOSAA 2011

Gilles & al, JOSAA 2013 
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• Better sampling improves LQG controller performance
• 4 points / subaperture enough to analyse performance  

  

• VLT NAOS-like case: Diameter = 8m, 15 x 15 actuators grid, ASO SH 14 x 14 ml, 500 Hz

• Atmosphere: Typical turbulence conditon r0 = 0.1 m @ 0.55 μm

      3 turbulent layers
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IN THE TELESCOPE PUPIL

• Frozen Flow hypothesis on turbulent phase model:

     

: Part of         inside the 
telescope pupil  

: Part of         outside the 
telescope pupil  
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Taylor model with edge compensation

7

• Frozen Flow hypothesis on turbulent phase model:

     IN THE TELESCOPE PUPIL

: Part of         inside the 
telescope pupil  

: Part of         outside the 
telescope pupil  



8

• 1st solution: 

No edge compensaton

Taylor model with edge compensation

 Lost 
 

Valid



8

• 1st solution: 

No edge compensaton

Taylor model with edge compensation

 Lost 
 

Valid



8

• 1st solution: 

No edge compensaton

Taylor model with edge compensation

 Lost 
 

Valid

• 2nd solution: 

Statc MAP estmaton

MAP very local, need few points of  

Valid



8

• 1st solution: 

No edge compensaton

Taylor model with edge compensation

 Lost 
 

Valid

• 2nd solution: 

Statc MAP estmaton

MAP very local, need few points of  

Valid



8

• 1st solution: 

No edge compensaton

Taylor model with edge compensation

 Lost 
 

Valid

• 2nd solution: 

Statc MAP estmaton

MAP very local, need few points of  

Valid

New dynamical model compensating edge degradation under Taylor hypothesis
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• VLT NAOS-like case: Diameter = 8m, 15 x 15 actuators grid, ASO SH 14 x 14 ml, 500 Hz 

                     Typical turbulence conditon r0 = 0.1 m @ 0.55 μm

   Multlayer atmosphere reconstructon with LQG regulator

Strehl Rato @ 1,65 μm:

• Strong degradation with pure Frozen Flow
• Edge compensation always effective  
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Performance comparison with other regulators

LQG-KF with Frozen Flow models and MAP compensation is efficient
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• Multlayer Frozen Flow models:
+ multlayer atmosphere model → High performance control
+ Highly parallelizable structure → Fast and well adapted to ELT scale AO
- Edge effects → deeply affects control performance of LQG regulators
+ Very local edge compensaton with MAP →  Highly parallelizable and efficient
 

• LQG regulator with multlayer Frozen Flow models and edge compensaton with MAP:
+ Compettve and better than AR2 Zernike LQG regulator for any atmosphere behavior
- Only tested with full knowledge of atmosphere and wind profiles
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• Robustness in performance in the presence of model errors 

• Extension of control strategy and edge degradation study to ELT-sized systems

• LQG with edge compensation efficient with Frozen Flow atmosphere:  
+ well adapted to high altitude layers with strong wind 
+ interesting for satellites tracking 
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