Optical Gain	Analyzing OG coeffs.	A Sky-ready method	Summary
0000	0000	000000	00

A Modal Approach to Optical Gain Compensation for the PWFS

Vincent Deo, Éric Gendron, Gérard Rousset, Fabrice Vidal, Tristan Buey

LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Univ. Paris Diderot, Sorbonne Paris Cité 5 place Jules Janssen, 92195 Meudon, France

WFSensing and Control in the VLT/ELT era III - Paris 2018

October 23rd, 2018

Laboratoire d'Études Spatiales et d'Instrumentation en Astrophysique

Optical Gain	Analyzing OG coeffs.	A Sky-ready method	Summary
0000	0000	000000	00

The Optical Gain phenomenon

- Analyzing Optical Gain: How much to apply, for what performance ?
- A method for sky operations: Poking some modes for automatic compensation updates

Optical Gain	Analyzing OG coeffs.	A Sky-ready method	Summary
•000	0000	000000	00

The Optical Gain phenomenon

Optical Gain	Analyzing OG coeffs.	A Sky-ready method	Summary
0000	0000	000000	00
Nonlinearities: the Optical	Gain (OG)		

Critical to understand and compensate:

- Getting some/more performance in bad seeing
- Using the pyramid with NCPAs

Optical Gain	Analyzing OG coeffs.	A Sky-ready method	Summary
0000	0000	0000000	00
Nonlinearities: the Optical	Gain (OG)		

Critical to understand and compensate:

- Getting some/more performance in bad seeing
- Using the pyramid with NCPAs

Optical Gain	Analyzing OG coeffs.	A Sky-ready method	Summary
0000	0000	0000000	00
Nonlinearities: the Optical	Gain (OG)		

Critical to understand and compensate:

- Getting some/more performance in bad seeing
- Using the pyramid with NCPAs

Astigmatism signal 60 % lower due to operating conditions !

Optical Gain	Analyzing OG coeffs.	A Sky-ready method	Summary
0000	0000	000000	00
Nonlinearities: the Optica	l Gain (OG)		

Critical to understand and compensate:

- Getting some/more performance in bad seeing
- Using the pyramid with NCPAs

Astigmatism signal 60 % lower due to operating conditions ! Parasite signal of 5 % added on top !

Optical Gain	Analyzing OG coeffs.	A Sky-ready method	Summary
0000	0000	000000	00
Nonlinearities: the Optica	l Gain (OG)		

Critical to understand and compensate:

- Getting some/more performance in bad seeing
- Using the pyramid with NCPAs

Astigmatism signal 60 % lower due to operating conditions ! Parasite signal of 5 % added on top !

Increase the controller gain by 2.5 ?

 $\mathbf{Rec}:$ flat-phase modal command matrix

Update \mathbf{Rec} with:

$$\mathbf{Rec}[\mathrm{OGMC}] = \begin{bmatrix} G_{\mathrm{opt}}(\mathrm{KL}_1) & 0 \\ & \ddots \\ 0 & & G_{\mathrm{opt}}(\mathrm{KL}_N) \end{bmatrix} \cdot \mathbf{Rec}$$

 \rightarrow Each mode of basis compensated appropriately

Problem solved ? How to get the G_{opt} ?

Using the KL basis of the DM $KL_1 \dots KL_N$

Find compensation coefficients $G_{opt}(KL_i)$. (dep. on the WFS state, atmos. conditions, ...)
 Optical Gain
 Analyzing OG coeffs.
 A Sky-ready method
 Summary

 0000
 0000
 0000000
 00

 Reconstruction with optical gain - DM space analysis
 0000000
 00

Let ${\bf c}$ be a DM mode

 Optical Gain 000
 Analyzing OG coeffs. 0000
 A Sky-ready method 00000000
 Summary 00

 Reconstruction with optical gain - DM space analysis

Let ${\bf c}$ be a DM mode

Some phase residual + push-pull of $\pm \mathbf{c} \colon$ PWFS reconstructs $\mathbf{d} \neq \mathbf{c}$

Colinear component $\mathbf{d}_{\parallel} = \gamma \times \mathbf{c}$ γ : sensitivity loss factor

Disturbing component \mathbf{d}_\perp

 Optical Gain
 Analyzing OG coeffs.
 A Sky-ready method
 Summary

 000
 0000
 0000000
 00

Let \mathbf{c} be a DM mode

Some phase residual + push-pull of $\pm \mathbf{c}:$ PWFS reconstructs $\mathbf{d} \neq \mathbf{c}$

Colinear component $\mathbf{d}_{\parallel} = \gamma \times \mathbf{c}$ γ : sensitivity loss factor

Disturbing component \mathbf{d}_\perp

Good rescaling for ϕ around ϕ_{ref} :

 G_{opt} such that $\overrightarrow{\mathbf{err}_{\mathrm{OGMC}}}$ is minimal

 Optical Gain
 Analyzing OG coeffs.
 A Sky-ready method
 Summary

 000
 0000000
 00
 00
 00

Reconstruction with optical gain - DM space analysis

Let ${\bf c}$ be a DM mode

Some phase residual + push-pull of $\pm \mathbf{c} \colon$ PWFS reconstructs $\mathbf{d} \neq \mathbf{c}$

Colinear component $\mathbf{d}_{\parallel} = \gamma \times \mathbf{c}$ γ : sensitivity loss factor

Disturbing component \mathbf{d}_{\perp}

Good rescaling for ϕ around ϕ_{ref} :

 G_{opt} such that $\overrightarrow{\mathbf{err}_{\mathrm{OGMC}}}$ is minimal

Quantities to analyse:

 $\begin{array}{l} \mbox{Error without OGMC: } E_{\rm Rec} \\ \mbox{Error after OGMC: } E_{\rm OGMC} \end{array}$

- both dimensionless, in units of $||\mathbf{c}||$ -

 $\textbf{OGMC} \equiv \textbf{Optical Gain Modal Compensation}$

Optical Gain	Analyzing OG coeffs.	A Sky-ready method	Summary
0000	0000	000000	00

Analyzing Optical Gain: How much to apply, for what performance ?

Optical Gain	Analyzing OG coeffs.	A Sky-ready method	Summary
0000	0000	0000000	00
Simulation parameters			

Numerical simulations configuration

Numerical sin	
Telescope	D = 18.0 m diameter
Turbulanca lavar	Single Von-Karmann GL
Turbulence layer	Selectable $r_0 - L_0 = 25 \text{ m}$
Source	On-axis natural guide star
Loop rate	500 Hz (200 Hz)
	39×39
DM	pitch = 47 cm
	1,177 KL modes
Subap.	61×61
Measurements	all illuminated pixels
$\lambda_{ m PWFS}$	658 nm
PWFS modulation	Circular; selectable $r_{ m Mod}$.
Noise	$0.3 \ e^-$
Controller	Modal integrator
Controller	2 frames latency
$\lambda_{ m Science}$	1,650 nm

Note: all r_0 in this talk given at 500 nm.

 γ - depends only on r_0 - less than 3% variation with turbulence realization. $E_{\rm Rec} \longrightarrow E_{\rm OGMC}$ - Dramatic nonlinearity error reduction for low & mid orders.

Optical Gain	Analyzing OG coeffs.	A Sky-ready method	Summary
0000	0000	000000	00
End-to-end OGMC compa	rative performance – for static a	and known r_0	

Without noise:

Eliminate loop gain contribution What does OGMC bring on top of it ?

Finding out with simulations Loop gain sweep: 0.1 – 2.0, $r_{\rm Mod} = 4\lambda/D$

- Performance is always increased
- Gain at best S.R. is stable at 0.4.
- Most gain for bright stars in poor seeing \rightarrow expected increase of useful tel. time

But:

• We knew the seeing & it never changed

Without noise:

Eliminate loop gain contribution What does OGMC bring on top of it ?

Finding out with simulations Loop gain sweep: 0.1 - 2.0, $r_{\rm Mod} = 4\lambda/D$

 $Mag_R = 16.0$ (.44 ph/px/fr @ 500Hz):

- Performance is always increased
- Gain at best S.R. is stable at 0.4.
- Most gain for bright stars in poor seeing \rightarrow expected increase of useful tel. time

But:

• We knew the seeing & it never changed

8/15

Eliminate loop gain contribution What does OGMC bring on top of it ?

Finding out with simulations Loop gain sweep: 0.1 – 2.0, $r_{\rm Mod} = 4\lambda/D$

 $Mag_R = 17.0$ (.18 ph/px/fr @ 500Hz):

- Performance is always increased
- Gain at best S.R. is stable at 0.4.
- Most gain for bright stars in poor seeing \rightarrow expected increase of useful tel. time

But:

• We knew the seeing & it never changed

8/15

Optical Gain	Analyzing OG coeffs.	A Sky-ready method	Summary
0000	0000	000000	00

A method for sky operations: Poking some modes for automatic compensation updates

Another example: $r_{\text{Mod}} = 2\frac{\lambda}{D}$, Mag_R = 16, $r_0 = 12.9$ cm

DM-space total 212.1 nm RMS

KL #

101

10²

10³

10⁰ + 10⁰

 2×10^{0}

 10^{0}

n

250

500

KL #

750

1000

11/15

Optical GainAnalyzing OG coeffs.A Sky-ready methodSummary000000000000000When r_0 varies wildly/widely: poke & update every minute for 6% r_0 variation steps

Optical Gain	Analyzing OG coeffs.	A Sky-ready method	Summary
0000	0000	0000000	00
Performance during the p	oking cycle		

Bright star - r_0 = 10 cm

LE PSF across 500 msec. poke cycle

Nominal LE SR: 55±3%

Optical Gain	Analyzing OG coeffs.	A Sky-ready method	Summary
0000	0000	0000000	00
Performance during the p	oking cycle		

 $\mathrm{Mag}_\mathrm{R} = 16$ - $r_0 = 12.9$ cm

LE PSF across 500 msec. poke cycle

Nominal LE SR: 54±4%

Optical Gain	Analyzing OG coeffs.	A Sky-ready method	Summary
0000	0000	000000	00
Proposed operational proc	edures		

The Strehl is not reduced for exposures over the whole poke cycle.

- Artifacts will be optimized by a better choice of modes
- Known disturbed PSFs can be provided to astronomers

But Strehl may drop by 5-10% for short snaps within the poke cycle.

Perspectives for operations:

- Software interaction between the AO and the spectro-imager
- If imaging sequences of short exposures:
 - \rightarrow Imager told to hold during poke sequences (0.5 sec every min.)
- If doing long exposures:
 - \rightarrow AO pokes and recalibrates gains during the exposure, artifacts are diluted.

Optical Gain	Analyzing OG coeffs.	A Sky-ready method	Summary
0000	0000	000000	•0

Summary

Optical Gain	Analyzing OG coeffs.	A Sky-ready method	Summary
0000	0000	0000000	00
Summary			

On optical gain:

- Small signal component of nonlinearity
- KL basis a fitting candidate for this model

On the OGMC method:

- Large reduction of nonlin. error for low orders
- Valuable increase in end-to-end perf.

On the poking method:

- Perf. comparable to when r_0 is known/static
- Stable across very long durations
- Self adaptive to large seeing changes
- Little interference with science

Future work:

- Improve, understand, optimize duration, amplitudes, SNR, misc. parameters...
- Porting this pipeline on demonstrator bench
- On-sky demonstration; WHT 2020-2021 ?
- Integration in MICADO SCAO RTC

On our way for a continuously better PWFS cookbook !