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Pyramid topics

• The non-linearity issue of the pyramid
sensor

• Methods for optical gain compensation
and NCPA handling

• Non-linear wavefront reconstruction
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Problem description

Pyramid sensor measuring process:

PΦ = s

(Φ ... incoming wavefront, s ... pyramid sensor measurements)

interaction-matrix-based:
P̃ ... 2nsub × nact - matrix

model-based:
P ... non-linear operator
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Ideas for optical gain compensation/NCPA correction

usage of linear reconstructor and a frequency dependent gain

usage of non-linear reconstructor

linearize around a non-zero setpoint
(e.g., for correction in presence of large NCPAs)
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Ideas for optical gain compensation

usage of linear reconstructor and a frequency dependent gain

• registration of measurements

• analyze the sensor response to fed frequencies in numerical
simulations

[1] V. Korkiakoski et al., Improving the performance of a pyramid wavefront sensor with modal
sensitivity compensation, Appl. Opt. 47, (2008).

[2] V. Korkiakoski et al., Applying sensitivity compensation for pyramid wavefront sensor in
different conditions, Proc. SPIE 7015, (2008).

[3] V. Viotto et al., PWFSs on GMCAO: a different approach to the non-linearity issue, Proc.
SPIE 9909, (2016).

[4] V. Deo et al., A modal approach to optical gain compensation for the pyramid wavefront
sensor, Proc. SPIE 1070320, (2018).

[5] see talk by V. Deo
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Which non-linear reconstructors exist?

phase retrieval algorithm:

R. Clare et al., Phase retrieval from subdivision of the focal plane
with a lenslet array, Appl. Opt. 43, (2004).

Jacobian reconstruction method:

V. Korkiakoski et al., Comparison between a model-based and a
conventional pyramid sensor reconstructor, Appl. Opt. 46, (2007).

quasi-Newton method:

R. Frazin, Efficient, nonlinear phase estimation with the
nonmodulated pyramid wavefront sensor, J. Opt. Soc. Am. A 35,
(2018).

learning approach: see talk by S. Haffert

non-linear Landweber Iteration for Pyramid Sensors (LIPS)

non-linear Kaczmarz-Landweber It. for Pyramid Sensors (KLIPS)
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Nonlinear reconstruction - Landweber iteration

• non-linear technique for finding a minimizer of the quadratic
functional

||PΦ− s||2L2(R2)

• using this iterative procedure and roof sensor approximation R

Φk+1 = Φk + ωR′ (Φk)∗ (s − R (Φk)) , k = 0, 1, 2, . . .

V. H., R. Ramlau. Non-linear wavefront reconstruction methods for
pyramid sensors using Landweber and Landweber-Kaczmarz iteration.
Appl. Opt. 57(30), (2018).
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Results for the non-modulated sensor at 2.2µm

LE Strehl

zonal MVM 0.89
P-CuReD 0.87
non-linear KLIPS 0.85
linear KLIPS 0.84
modal MAP 0.62[1]

METIS-like
telescope diameter 37m
central obstruction 30%
AO system SCAO
sensor 74× 74 PWFS

sensing band K

evaluation band K

modulation 0
atmosphere median

Fried radius r0@500nm 15.7 cm
photon flux [50− 10000] ph/px/frame
frame rate 1000 Hz
DM delay 1
mirror geometry ELT M4
iterations 500

NCPAs no

[1] M. Le Louarn et al., Latest AO simulation results for the E-ELT, poster AO4ELT5.
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Characteristics of LIPS & KLIPS

• very sensitive to parameter choices

• experience (almost) no gain in using non-linear algorithms for modulated
sensor

• Do non-linear algorithms outperform their corresponding linear
estimators? – Yes, sometimes BUT ...

• First results for low flux cases are poor.

• Do the non-linear reconstructors give better results when the pyramid
sensor is not in its linear regime?

– No, it’s confusing!

V. Hutterer, Iu. Shatokhina (Semi-)analytical and non-linear approaches towards optical gain compensation for PWFS



Austrian Adaptive Optics

Linearization around a non-zero setpoint
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Non-linear pyramid sensor model (transmission mask)

linearize around a non-zero setpoint
(e.g., for correction in presence of large NCPAs)

The non-linear pyramid sensor operator without modulation

Px : H11/6
(
R2
)
→ L2

(
R2
)

is given by

PxΦ(x , y) := XΩ(x , y)
1

π

∫
Ωy

sin [Φ(x ′, y)− Φ(x , y)]

x ′ − x
dx ′

+
1

π3
XΩy (x) p.v .

∫
Ωy

∫
Ωx

∫
Ωx

sin [Φ(x ′, y ′)− Φ(x , y ′′)]

(x ′ − x)(y ′ − y)(y ′′ − y)
dy ′′ dy ′ dx ′.
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Linearization around 0

The linear pyramid sensor operator without modulation

Plin
x : H11/6

(
R2
)
→ L2

(
R2
)

around 0 is given by

Plin
x Φ(x , y) := XΩ(x , y)

1

π

∫
Ωy

[Φ(x ′, y)− Φ(x , y)]

x ′ − x
dx ′

+
1

π3
XΩy (x) p.v .

∫
Ωy

∫
Ωx

∫
Ωx

[Φ(x ′, y ′)− Φ(x , y ′′)]

(x ′ − x)(y ′ − y)(y ′′ − y)
dy ′′ dy ′ dx ′.
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Linearization around non-zero setpoint

The linear roof sensor operator without modulation

Rlin
x : H11/6

(
R2
)
→ L2

(
R2
)

around the residual Φres is given by

Rlin
x Φ(x , y) := XΩ(x , y)

1

π

∫
Ωy

sin [Φres(x ′, y)− Φres(x , y)]

x ′ − x
dx ′

−
1

π

∫
Ωy

cos [Φres(x ′, y)− Φres(x , y)]

x ′ − x

[
Φres

(
x ′, y

)
− Φres (x , y)

]
dx ′

+
1

π

∫
Ωy

cos [Φres(x ′, y)− Φres(x , y)]

x ′ − x

[
Φ
(
x ′, y

)
− Φ (x , y)

]
dx ′
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Results: optical gain compensation

results for r0 = 10 cm, mod 4 λ/D, half-ELT setting,
R-band sensing, no oversampling:

to do: improve OG evaluation
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Outlook: optical gain compensation

analyze data in FD
R-band, median atm, rmsres ≈ 100nm, phase 100/30nm ampl.

Conclusion: not all non-linearity can be corrected

V. Hutterer, Iu. Shatokhina (Semi-)analytical and non-linear approaches towards optical gain compensation for PWFS



Austrian Adaptive Optics

Open question & outlook

• non-linear reconstructors

• What is the influence of the sensing wavelength, Fried
parameter,...?

• Can we extend the regime in which the non-modulated PWFS
usefully operates?

• When do we (want to) benefit from a non-linear reconstructor?
• What happens if large NCPAs are present?

• Are linear reconstructors still usable?
• Will the non-linear approaches outperform linear ones?

• develop OGC for linear model-based reconstructors (e.g., for
P-CuReD)

• derive frequency dependent gain analytically

We need to get a deeper understanding of the non-linearity!
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Reconstruction qualities of existing methods

Algorithm Quality in end-to-end simulations (OCTOPUS)
(LE Strehl ratios in the K-band)

SCAO SCAO SCAO SCAO XAO XAO
Modulation (λ/D) mod 0 mod 4 mod 0 mod 4 mod 0 mod 4
Photon flux (ph/pix/it) 10000 10000 10000 600 50 50
Frame rate (kHz) 1 0.5 1 0.5 3 3
Mirror geometry M4 M4 M4 M4 Fried Fried
Telescope spiders 7 7 3 3 7 7

Interaction matrix inversion: modal ≈ 0.62 [1] 0.888 0.859 0.96

Interaction matrix inversion: zonal 0.890 0.890 0.894

Preprocessed CuReD (P-CuReD) 0.871 0.887 0.865 0.878 0.916 0.961

Conv. with Linearized Inverse Filter (CLIF) 0.88 0.94
Pyramid FTR (PFTR) 0.88 0.94

Finite Hilbert Transform Rec. (FHTR) 0.779 – – 0.853 –
Singular Value Type Reconstructor (SVTR) 0.74 – – 0.884 –

Conjugate Gradient for Normal Eq (CGNE). 0.842 0.860 0.901

Steepest Descent (SD) 0.841 0.858
Steepest Descent-Kaczmarz (SD-K) 0.841 0.858
Linear Landweber iteration (LIPS) 0.840 0.860
Linear Kaczmarz-Landweber iteration (KLIPS) 0.842 0.858 0.897

Non-linear Landweber iteration (LIPS) 0.853 0.834

Non-linear Kaczmarz-Landweber iteration (KLIPS) 0.853 0.826 0.903

[1] M. Le Louarn et al., Latest AO simulation results for the E-ELT, poster AO4ELT5.
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