

(Semi-)analytical and non-linear approaches towards optical gain compensation for pyramid sensors

Victoria Hutterer & Iuliia Shatokhina

joint work with Ronny Ramlau and Andreas Obereder

Industrial Mathematics Institute, Johannes Kepler University (JKU), Linz, Austria. Johann Radon Institute for Computational and Applied Mathematics (RICAM), Linz, Austria.

Paris, October 23, 2018

Pyramid topics

- The non-linearity issue of the pyramid sensor
- Methods for optical gain compensation and NCPA handling
- Non-linear wavefront reconstruction

Problem description

Pyramid sensor measuring process:

 $\mathbf{P}\Phi = s$

(Φ ... incoming wavefront, *s* ... pyramid sensor measurements)

interaction-matrix-based: $\tilde{\mathbf{P}} \dots 2n_{sub} \times n_{act}$ - matrix **model-based:** P ... non-linear operator

V. Hutterer, Iu. Shatokhina

Ideas for optical gain compensation/NCPA correction

usage of linear reconstructor and a frequency dependent gain

usage of non-linear reconstructor

linearize around a non-zero setpoint (e.g., for correction in presence of large NCPAs)

V. Hutterer, Iu. Shatokhina

Ideas for optical gain compensation

usage of linear reconstructor and a frequency dependent gain

- registration of measurements
- analyze the sensor response to fed frequencies in numerical simulations
- V. Korkiakoski et al., Improving the performance of a pyramid wavefront sensor with modal sensitivity compensation, Appl. Opt. 47, (2008).
- [2] V. Korkiakoski et al., Applying sensitivity compensation for pyramid wavefront sensor in different conditions, Proc. SPIE 7015, (2008).
- [3] V. Viotto et al., PWFSs on GMCAO: a different approach to the non-linearity issue, Proc. SPIE 9909, (2016).
- [4] V. Deo et al., A modal approach to optical gain compensation for the pyramid wavefront sensor, Proc. SPIE 1070320, (2018).
- [5] see talk by V. Deo

SFB Tomography Across the Scales OAW RICAM

Which non-linear reconstructors exist?

phase retrieval algorithm:

- R. Clare et al., Phase retrieval from subdivision of the focal plane with a lenslet array, Appl. Opt. 43, (2004).
- Jacobian reconstruction method:
 - V. Korkiakoski et al., Comparison between a model-based and a conventional pyramid sensor reconstructor, Appl. Opt. 46, (2007).
- quasi-Newton method:
 - - R. Frazin, Efficient, nonlinear phase estimation with the nonmodulated pyramid wavefront sensor, J. Opt. Soc. Am. A 35, (2018).
- learning approach: see talk by S. Haffert
- non-linear Landweber Iteration for Pyramid Sensors (LIPS)
- non-linear Kaczmarz-Landweber It. for Pyramid Sensors (KLIPS)

Nonlinear reconstruction - Landweber iteration

• non-linear technique for finding a minimizer of the quadratic functional

industrial

ÖAW RICAM MAT

$$\left|\left|\mathbf{P}\Phi-s
ight|
ight|^{2}_{\mathcal{L}_{2}(\mathbb{R}^{2})}$$

- using this iterative procedure and roof sensor approximation ${\bf R}$

$$\Phi_{k+1} = \Phi_k + \omega \mathbf{R}' (\Phi_k)^* (s - \mathbf{R} (\Phi_k)), \qquad k = 0, 1, 2, \dots$$

V. H., R. Ramlau. Non-linear wavefront reconstruction methods for pyramid sensors using Landweber and Landweber-Kaczmarz iteration. Appl. Opt. 57(30), (2018).

SFB Tomography

Across the Scales

Results for the non-modulated sensor at 2.2μ m

			METIS-like		
		telescope diameter	37 <i>m</i>		
		central obstruction	30%		
		AO system	SCAO		
		sensor	74×74 PWFS		
	LE Strehl	sensing band	К		
zonal MVM	0.89	evaluation band	К		
P-CuReD	0.87	modulation	0		
non-linear KLIPS	0.85	atmosphere	median		
linear KLIPS	0.84	Fried radius r ₀ @500nm	15.7 cm		
modal MAP	0.62[1]	photon flux	[50 - 10000] ph/px/frame		
	0.0=[=]	frame rate	1000 Hz		
		DM delay	1		
		mirror geometry	ELT M4		
		iterations	500		
		NCPAs	no		

[1] M. Le Louarn et al., Latest AO simulation results for the E-ELT, poster AO4ELT5.

Characteristics of LIPS & KLIPS

- very sensitive to parameter choices
- experience (almost) no gain in using non-linear algorithms for modulated sensor
- Do non-linear algorithms outperform their corresponding linear estimators? Yes, sometimes BUT ...
- First results for low flux cases are poor.
- Do the non-linear reconstructors give better results when the pyramid sensor is not in its linear regime?
 - No, it's confusing!

Linearization around a non-zero setpoint

V. Hutterer, Iu. Shatokhina

Non-linear pyramid sensor model (transmission mask)

linearize around a non-zero setpoint (e.g., for correction in presence of large NCPAs)

The **non-linear** pyramid sensor operator without modulation

$$P_{x} : \mathcal{H}^{11/6}(\mathbb{R}^{2}) \to \mathcal{L}_{2}(\mathbb{R}^{2}) \text{ is given by}$$

$$P_{x}\Phi(x,y) := \mathcal{X}_{\Omega}(x,y)\frac{1}{\pi}\int_{\Omega_{y}} \frac{\sin\left[\Phi(x',y) - \Phi(x,y)\right]}{x'-x} dx'$$

$$+ \frac{1}{\pi^{3}}\mathcal{X}_{\Omega_{y}}(x) p.v.\int_{\Omega_{y}} \int_{\Omega_{x}} \int_{\Omega_{x}} \frac{\sin\left[\Phi(x',y') - \Phi(x,y'')\right]}{(x'-x)(y'-y)(y''-y)} dy'' dy' dx'.$$

V. Hutterer, Iu. Shatokhina

Linearization around 0

The linear pyramid sensor operator without modulation

$$P_{x}^{lin}: \mathcal{H}^{11/6}(\mathbb{R}^{2}) \to \mathcal{L}_{2}(\mathbb{R}^{2}) \quad \text{around } 0 \text{ is given by}$$

$$P_{x}^{lin}\Phi(x,y) := \mathcal{X}_{\Omega}(x,y)\frac{1}{\pi} \int_{\Omega_{y}} \frac{[\Phi(x',y) - \Phi(x,y)]}{x' - x} dx'$$

$$+ \frac{1}{\pi^{3}}\mathcal{X}_{\Omega_{y}}(x) p.v. \int_{\Omega_{y}} \int_{\Omega_{x}} \int_{\Omega_{x}} \frac{[\Phi(x',y') - \Phi(x,y'')]}{(x' - x)(y' - y)(y'' - y)} dy'' dy' dx'.$$

V. Hutterer, Iu. Shatokhina

Linearization around non-zero setpoint

V. Hutterer, Iu. Shatokhina

SFB Tomography Across the Scales ÖAW RICAM

Results: optical gain compensation

results for $r_0 = 10$ cm, mod 4 λ/D , half-ELT setting, R-band sensing, no oversampling:

r0=10 cm, mod=4		H-band LE Strehl			
environment	reconstructor				
octopus	Linear Landweber	0,408			
	Non-linear Landweber	0,441			
	modal MAP	0,456			
compass	m∨m (V. Deo)	0,470			
octopus	cured	0,480			
	P-cured	0,512			
	OGC-P-cured	0,525			
compass	OGC-mvm (V. Deo)	0,570			

to do: improve OG evaluation

Outlook: optical gain compensation

- analyze data in FD
- R-band, median atm, $rms_{res} \approx 100$ nm, phase 100/30 nm ampl.

Conclusion: not all non-linearity can be corrected

V. Hutterer, Iu. Shatokhina

ÖAW RICAM

Open question & outlook

- non-linear reconstructors
 - What is the influence of the sensing wavelength, Fried parameter,...?
 - Can we extend the regime in which the non-modulated PWFS usefully operates?
 - When do we (want to) benefit from a non-linear reconstructor?
 - What happens if large NCPAs are present?
 - Are linear reconstructors still usable?
 - Will the non-linear approaches outperform linear ones?
- develop OGC for linear model-based reconstructors (e.g., for P-CuReD)
- derive frequency dependent gain analytically

We need to get a deeper understanding of the non-linearity!

Thank you for your attention!

Reconstruction qualities of existing methods

Algorithm	Quality in end-to-end simulations (OCTOPUS)						
	(LE Strehl ratios in the K-band)						
	SCAO	SCAO	SCAO	SCAO	XAO	XAO	
Modulation (λ / D)	mod 0	mod 4	mod 0	mod 4	mod 0	mod 4	
Photon flux (ph/pix/it)	10000	10000	10000	600	50	50	
Frame rate (kHz)	1	0.5	1	0.5	3	3	
Mirror geometry	M4	M4	M4	M4	Fried	Fried	
Telescope spiders	X	×	1	1	×	×	
Interaction matrix inversion: modal	\approx 0.62 [1]	0.888		0.859		0.96	
Interaction matrix inversion: zonal		0.890	0.890	0.894			
Preprocessed CuReD (P-CuReD)	0.871	0.887	0.865	0.878	0.916	0.961	
Conv. with Linearized Inverse Filter (CLIF)					0.88	0.94	
Pyramid FTR (PFTR)					0.88	0.94	
Finite Hilbert Transform Rec. (FHTR)	0.779	-		-	0.853	-	
Singular Value Type Reconstructor (SVTR)	0.74	-		-	0.884	-	
Conjugate Gradient for Normal Eq (CGNE).	0.842	0.860			0.901		
Steepest Descent (SD)	0.841	0.858					
Steepest Descent-Kaczmarz (SD-K)	0.841	0.858					
Linear Landweber iteration (LIPS)	0.840	0.860					
Linear Kaczmarz-Landweber iteration (KLIPS)	0.842	0.858			0.897		
Non-linear Landweber iteration (LIPS)	0.853	0.834					
Non-linear Kaczmarz-Landweber iteration (KLIPS)	0.853	0.826			0.903		

[1] M. Le Louarn et al., Latest AO simulation results for the E-ELT, poster AO4ELT5.

V. Hutterer, Iu. Shatokhina

6