

Daniele Vassallo, Jacopo Farinato, Jean-Francois Sauvage, Thierry Fusco, Valentina Viotto, Maria Bergomi, Davide Greggio, Elena Carolo, Luca Marafatto, Demetrio Magrin, Roberto Ragazzoni

ADATTIVA

SCIENCE – EXOPLANETS WITH SHARK-NIR

What will SHARK-NIR hunt?

- Giant planets around low-mass stars in:
 - nearby Taurus-Auriga SFR (1-10 Myr)
 - young moving groups (10-100 Myr)
- Brown dwarfs in stellar associations/open clusters (e.g. Pleiades)

What can we do?

- Astrometry to determine dynamical masses (short period systems)
- Low and medium resolution long-slit spectroscopy to study the atmosphere

NON COMMON PATH ABERRATIONS

ΑΟΑΤΤ

NON COMMON PATH ABERRATIONS

Need for *local* and *on-line* sensing and correction

Which are the requirements then?

- Fast sensing
- Local, but with small opto-mechanical impact
- Sensitive to the whole non-common path upstream of the coronagraphs

PHASE DIVERSITY: THE PRINCIPLE

□ What is Phase Diversity? A Focal Plane WFS technique

- How does this kind of sensor work? Recover phase information from intensity measurements ("Phase retrieval" algorithm)
- ... Two major drawbacks using a single image:
 - I. Not unique solution
 - II. Only works with point-like sources

Gonsalves and Chidlaw (1982):

Use two images of the same (whatever) object with a known finite relative defocus

PHASE DIVERSITY: THE ALGORITHM

The algorithm has been developed at **ONERA**:

• Numerical minimization of the criterion:

$$J_{LS}(\phi) = \frac{1}{2} \sum_{v} \frac{\left(\left|\tilde{i}_{f}(v) - \tilde{h}_{f}(\phi, v)\tilde{o}(\phi, v)\right|^{2}\right)}{\sigma_{f}^{2}} + \frac{\left(\left|\tilde{i}_{d}(v) - \tilde{h}_{d}(\phi, v)\tilde{o}(\phi, v)\right|^{2}\right)}{\sigma_{d}^{2}}$$

- Joint estimation of object and phase by fast conjugate-gradient method
- Pixel-wise estimation
- Validated both in simulations and experimentally

J.-F. Sauvage, T. Fusco et al., "Calibration and precompensation of noncommon path aberrations for extreme adaptive optic", Journal of the Optical Society of America A, vol. 24, Issue 8, pp.2334-2346, 2007

PHASE DIVERSITY IN SHARK-NIR

Simultaneous generation of focus/defocus images on the scientific camera with either natural or artificial light

NCPA IN SHARK-NIR

ADATT

VΑ

Contributor	rms WFE [nm]	Aberration type/spectrum		
Dichroic nominal transmitted WFE	31	28nm chromatic dispersion + 13nm astigmatism.		
Dichroic manufacturing transmitted WFE	28	The expected PSD is f ⁻² [cycles/pupil].		
Dichroic manufacturing reflected WFE	23	The expected PSD is f^2 [cycles/pupil].		
Manufacturing (dichroic excluded) tolerances	90	The expected PSD is f^2 [cycles/pupil].		
Alignment tolerances	35	29nm astigmatism + 2nm coma + 3nm spherical ab.		
TOTAL	110			
Daniele Vassallo WES and control in	the VIT/EIT org 2/	ADV		

PD ON SKY: SIMULATIONS

POP (Physical Optics Propagation) code based on IDL library PROPER

R = 8 - 12

Seeing = 0.4" – 1.2"

DIT = 1-10 s

Residual jitter: 0-10 mas rms

Band: H (1.558 μm) - **polychromatic**

Defocus: 2λ ptv

RECONSTRUCTION ERROR

FITTING ERROR

Fit of the reconstructed map with **ALPAO DM97-15**

Real measured influence functions

Daniele Vassallo, WFS and control in the VLT/ELT era, 24 October 2018, Paris

ΑΟΑΤΤΙΥΑ

PD ON SKY: PERFORMANCE ESTIMATION

	Reconstruction Error [nm]	σ _{REC} Residual after DM fitting [nm]		$\sigma_{\rm RES}$
Low-orders	15.7	0.6	20.4	0.5
High-orders	24.9	0.6	42.4	0.3

Daniele Vassallo, WFS and control in the VLT/ELT era, 24 October 2018, Paris

LABORATORIO

0

ADATTIVA

ΝΑΖΙ

0

PD ON SKY: PERFORMANCE ESTIMATION

R = 8

Seeing ['']	SR	Error [nm]	σ [nm]
0.4	80%	23.9	0.5
0.6	76%	24.5	0.6
0.8	70%	26.1	0.7
1.0	61%	29.8	0.7
1.2	48%	38.3	0.9

Daniele Vassallo, WFS and control in the VLT/ELT era, 24 October 2018, Paris

PD ON SKY: RECONSTRUCTION VS SEEING

PD ON SKY: RECONSTRUCTION VS SEEING

ADATTIVA

PD ON SKY: RECONSTRUCTION WITH VIBRATIONS

Vibrations: ~70 mas (Open Loop)

 $\mathbf{R} = \mathbf{12}$ **Seeing = 0.6**" DIT = 10 s

VIBRATIONS

22 24 Reconstruction Error [nm]

Occurrence

Daniele Vassallo, WFS and control in the VLT/ELT era, 24 October 2018, Paris

Ω

Reconstruction Error [nm]

PD ON SKY: RECONSTRUCTION WITH VIBRATIONS

Power spectrum with vibrations:

- High extra-power at low orders
- Bump at 1.0 m-1... the control radius!

FINAL REMARKS AND CONCLUSIONS

- Phase diversity could be a valuable option in SHARK-NIR for fast online sensing of non-common path aberrations
- Working with natural light, AO correction is mandatory in order to mitigate the noise introduced by atmospheric speckles: in closedloop and high Strehl regime, residuals are expected to be as low as 20 nm using ALPAO DM 97-15
- Simulations show that seeing degradation and vibrations might limitate the recontruction capabilities of the algorithm.

THANK YOU!

PD WITH FIBERS

How to calibrate the defocus we are introducing?

