# Update on pyramid topics: spiders, LWE, NCPAs, M4, sensitivtiy, K vs R band, ...

#### Andreas Obereder & Iuliia Shatokhina,

joint work with Victoria Hutterer & Ronny Ramlau

RICAM, ÖAW, Linz Industrial Mathematics Institute, JKU, Linz

WaveFront Sensing and Control in the VLT/ELT era III, Paris, October 22-24, 2018

イロト イポト イヨト イヨト 二日

#### **Topics**

- Overview on novel reconstructors
- Reconstruction in the presence of spiders: three methods

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● のへで

- Handling M4 geometry
- Misregistration analysis
- LWE tests
- First approaches to handling NCPAs
- Pyramid sensitivtiy: K vs R band

# **Developed algorithms**

- Iterative algorithms
  - Conjugate Gradient for the Normal Equation (CGNE)
  - Steepest Descent (SD)
  - Landweber-Kaczmarz Iteration (LKI)
  - V. H., R. Ramlau, I.S. *Real-time AO with pyramid wavefront sensors: Theoretical analysis of pyramid forward model.* Submitted. Available as preprint https://arxiv.org/abs/1810.00682
  - V. H., R. Ramlau, I.S. *Real-time AO with pyramid wavefront sensors: Accurate wavefront reconstruction with iterative methods.* Submitted. Available as preprint https://arxiv.org/abs/1809.10888

#### Non-linear Landweber

V. H., R. Ramlau. Non-linear wavefront reconstruction methods for pyramid sensors using Landweber and Landweber-Kaczmarz iteration. Appl. Opt. 57(30), (2018).

See talk on Tuesday at 15:10

V. Hutterer & I.S., (Semi-)analytical and non-linear approaches towards optical gain compensation for pyramid sensors.

Three methods developed:

- Zonal minimum variance estimator with regularized sparse approximation of C<sub>Φ</sub> (Ellerbroek02, Bardsley08)
- Split approach I: P-CuReD + DSPR I
- Split approach II: P-CuReD + DSPR II



V. Hutterer, I. S., A.O., R. Ramlau. Advanced wavefront reconstruction methods for segmented ELT pupils using pyramid sensors. Submitted.

### **Effect of misregistration**

- subaperture size (WFS pixel size): 0.5m
- DM: M4
- unit of shifts: 1 discretisation pixel  $\equiv$  5cm
- unit of rotation: degree
- Results

| misregistration     | LE Strehl Ratio |  |
|---------------------|-----------------|--|
| x(0) y(0) rot(0)    | 89.2            |  |
| x(1) y(1) rot(0)    | 88.9            |  |
| x(2) y(0) rot(0)    | 88.2            |  |
| x(0) y(2) rot(0)    | 88.5            |  |
| x(2) y(2) rot(0)    | 87.4            |  |
| x(0) y(0) rot(0.35) | 88.5            |  |

• rule of thumb applicable (misaglinement stable up to 10

#### SE Strehl for different shifts

- 1 (discretisation) Pixel  $\equiv$  5cm  $\equiv$  10% of the subaperture size (WFS pixel)



◆□ > ◆□ > ◆豆 > ◆豆 > □ = の < @

### SE Strehl for different rotations





◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ● ●

- Actuators arranged circular, spiders "included"
- Active subapertures shown for *frac\_illum* = 0.45





- 1:  $actPos(2, nAct) \leftarrow x$  and y- coordinates of the M4 actuator positions
- 2:  $I\_sub \leftarrow mask$  holding the active subapertures/pixels
- 3: define and initialize *DM\_shape*
- 4: define and initialize DM\_update
- 5: procedure LOOP
- 6:  $(Sx, Sy) \leftarrow$  from Pyramid WFS
- 7:  $DM_update = AAORec(Sx, Sy, I_sub)$
- 8: *DM\_shape* = IntegratorControl(*DM\_shape*, *gain*, *DM\_update*)
- 9: *DM\_shape* = **TemporalFrequencyControl**(*DM\_shape*)
- 10: *M4\_actuatorCommands* = Interpolate(Extend(*DM\_shape*), *actPos*)
- 11: send M4\_actuatorCommands to M4
- 12: end procedure

- b holds DM values on Fried Geometry
- ▷ holds DM updates on Fried Geometry
  ▷ AO Loop

  - ▷ update on Fried geometry

### effects of temporal frequency control on the DM

- the first 50 iterations without temporal frequency control
- iteration 10000-10050 and 20000-20050 with DM control





### LWE simplified: fragmented pistons

- Simulations in Octopus: add additional LWE screens to WFS and science path
- First approach: add fragmented pistons of different amplitude
- Reconstructors: split and zonal mvm
- Results: loss in quality in dependence from amplitude, location of piston and the reconstructor used



#### LWE simplified: fragmented pistons (cont.)

- Simulate LWE on 6 pupil fragments simultaneously
- Amplitudes up to around 1µm (as expected on ELTs)



## **Realistic LWE**

- A combination of tip/tilt and piston on each pupil fragment, with amplitudes up to around 1μm (as expected on ELTs)
- Reference case (no LWE) LE@K=0.89



#### residual incoming screen



LE100@K=0.819

## **NCPAs**



Credits: Tibor Agocs & Olivier Absil

• Simulations in Octopus: add additional NCPA screens  $\phi_{ncpa}$  to WFS path only

æ

# NCPAs (cont.)

- Reference case (no NCPA) LE Strehl 0.89, rms=100nm
- How much correction quality do we lose? No correction:

$$\phi = PCuReD(Sx(\phi + \phi_{ncpa}), Sy(\phi + \phi_{ncpa}))$$

- Assuming linearity of sensor, two correction approaches
- Correction 1: compute data Sx(φ<sub>ncpa</sub>), Sy(φ<sub>ncpa</sub>); assuming linearity of sensor, subtract measurements

$$Sx' = Sx - Sx(\phi_{ncpa}),$$
  $Sy' = Sy - Sy(\phi_{ncpa})$   
 $\phi = PCuReD(Sx', Sy')$ 

• Correction 2: subtract  $\phi_{ncpa}$  from reconstruction PCuReD(Sx, Sy)

$$\phi = PCuReD(Sx(\phi + \phi_{ncpa}), Sy(\phi + \phi_{ncpa})) - \phi_{ncpa}$$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● のへで

# NCPAs (cont.) - no atmosphere



| No ATM             | LE100 |
|--------------------|-------|
| P-cured            | 0,905 |
| subtract meas_ncpa | 0,881 |
| subtract phi_ncpa  | 0,942 |

(日) (注) (主) (主) モーのへの

# NCPAs (cont.) - with atmosphere



# NCPAs (cont.) - with atmosphere



|                    | LE100 | LE1000 | rms, nm |
|--------------------|-------|--------|---------|
| P-cured            | 0,798 | 0,798  | 166     |
| subtract meas_ncpa | 0,775 | 0,767  | 180     |
| subtract phi_ncpa  | 0,813 | 0,697  | 210     |
| no ncpa            | 0,890 | 0,890  | 120     |

·문→ ★ 문→ · · · 문

- To do: improve interpolation
- Another correction approach: linearize around  $\phi_{ncpa}$

# Pyramid senstivity: K vs R band

- Sensitivity to fragmented piston with and without residual in background
- $rms_{res} \approx 100$ nm corresponds to
  - $\approx$  0.28 rad in K band  $\rightarrow$  in the linear range of pyramid
  - $\approx$  0.89 rad in R band  $\rightarrow$  far from the linear range of pyramid



- Non-linearity is the problem!
- Analytical formulas (see talk of VH & IS tomorrow)

#### Summary

 Three algorithms that solve pupil fragmentation (aka island effect, spiders) problem in K band

- Iterative and non-linear algorithms
- Stable control of M4
- Misregistration analysis
- First simulations in presence of LWE
- First simulations in presence of NCPAs

Further steps:

- Consider more realistic LWE data
- Handling NCPAs: linearize around NCPAs
- Combine NCPAs and LWE

# Thanks

Thank you for attention!

