### Architecture of ELT 1st light instruments' Hard Real Time Computing Facility with Xeon-Phis



- on behalf of -

Frédéric Chazalet, Didier Rabaud,

Léonardo Blanco, Thierry Fusco, Jean-François Sauvage,

Benoit Neichel, Noah Schwartz











#### Abstract

- We provide an overview of the key performance aspects covering computing power, memory bandwidth and throughput required for the Hard Real-Time Computer of the ELT 1<sup>st</sup> light instrument suite.
- An architecture is proposed for the most demanding tomographic wave-front reconstruction steps. Based on a detailed examination of the temporal diagram, backed by benchmarking results obtained with Xeon Phi processors, we find that with 1 node per Laser-Guide-Star Wave-front Sensor we can accomplish the Pixel Processing and Wavefront Tomographic Reconstruction steps (composed of wave-front reconstruction and Pseudo-Open-Loop slope calculation) within 1 loop cycle of 2ms with a latency that is below 1ms. We provide alternative arrangements should there be added overheads in any of the computation stages, granting the above figure is always met.
- We propose an extra node for the Time Filtering step and two other for the supervision and data recording. In total these amount to 9 if we tackle the full-scale problem.

## Rationale

- Design and prototype a Hard Real Time Controller for Adaptive Optics
  - Tackle the tomographic cases on the ELT

- Technologies
  - x86-64 architecture, multi-core, multi-CPU, general purpose computers, including support for SIMD extensions and vector processing units
  - Many Integrated Core (MIC) architecture, Intel Xeon Phi processors

## **Conceptual Block Diagram**



## **Conceptual Block Diagram**



## LGS WFSensing



## **Problem statement**

- Hard Real Time Controller for Tomographic Adaptive Optics
  - 6x 80x80 SH LGS WFS
  - 3x DM (M4: 5316, M2: 2, INS-DM:1000)

|                               | Per LGS WFS       |  |  |
|-------------------------------|-------------------|--|--|
| <b>Total Number of Pixels</b> | 640000            |  |  |
| Number of Slopes              | 9232              |  |  |
| Commands                      | 6316              |  |  |
| Telemetry                     | Slopes + commands |  |  |
|                               | + (sub-sampled)   |  |  |
|                               | detector pixels   |  |  |
| Disturbance data              | Slopes + commands |  |  |
| Matrices (M and R)            | 9232 x 6316       |  |  |



## Operations

- 1. Pixel processing
- 2. POL + Reconstruction
- 3. Time-filtering





## **Reconstruction + POLC requirements**

| Task               | Sub-task                         | # operations       |           | Memory bandwidth |         |          | Memory storage |
|--------------------|----------------------------------|--------------------|-----------|------------------|---------|----------|----------------|
|                    |                                  | # GFLOP/loop cycle | # GFLOP/s | Mbit/loop cycle  | Gbit/s  | Gbytes/s | Mbytes         |
| WFS Processing     | Calibration                      | 1,28E-03           | 0,64      | 81,92            | 40,96   | 5,12     | 10,24          |
|                    | Centroiding                      | 3,21E-03           | 1,60      | 102,70           | 51,35   | 6,42     | 10,30          |
|                    | Reference subtraction and Under- |                    |           |                  |         |          |                |
|                    | illumination handling            | 9,23E-06           | 4,62E-03  | 0,44             | 0,22    | 0,03     | 0,04           |
|                    | Slope Disturbance Injection      | 9,23E-06           | 4,62E-03  | 0,44             |         | 0,00     | 0,04           |
| WF Reconstruction  | POL                              | 3,79E-05           | 0,02      |                  |         |          |                |
|                    |                                  | 1,17E-01           | 58,31     | 1867,00          | 933,50  | 116,69   | 233,34         |
|                    | Tomography                       | 1,17E-01           | 58,31     | 1866,49          | 933,24  | 116,66   | 233,26         |
| Temporal Filtering | Error estimation                 | 6,32E-06           | 0,00      | 1,62             | 0,81    | 0,10     | 0,15           |
|                    | Low-order removal                | 5,68E-05           | 0,03      | 1,62             | 0,81    | 0,10     | 0,18           |
|                    | IIR                              | 1,52E-04           | 0,08      | 2,63             | 1,31    | 0,16     | 0,30           |
|                    | M4/M5 TT splitting               | 5,32E-05           | 0,03      | 1,02             | 0,51    | 0,06     | 0,03           |
|                    | Command biasing                  | 6,32E-06           | 3,16E-03  | 0,61             | 0,30    | 0,04     | 0,03           |
|                    | Disturbance injection            | 6,32E-06           | 3,16E-03  | 0,61             | 0,30    | 0,04     | 0,03           |
|                    | Total (1/6 of full problem size) | 0,24               | 119,03    | 3927,09          | 1963,32 | 245,42   | 487,92         |

## **Pixel processing**



## **Pipelining the processing**

- Current detector is read out in bursts of 8
   lines at a time
  - (four from either side of the detector).
- 8x800x16bit = 102400bits sent over the Ethernet link in bursts.
- With 10GbE network links: 102400/1e10x1e6=10.24 μs+10-20% overhead 11.3-12.3 μs.







## **Pipelining the processing**

- Current detector is read out in bursts of 8 lines at a time
  - (four from either side of the detector).
- 8x800x16bit = 102400bits sent over the Ethernet link in bursts.
- With 10GbE network links: 102400/1e10x1e6=10.24 μs+10-20% overhead 11.3-12.3 μs.





## **Pipelining the processing**

Variable Bandwidth Memory Access Requirements



13/21

### **High-order MMSE tomographic reconstruction**

• pseudo-open-loop measurements given by  

$$s_k^{POL} = s_k + M\left(\sum_{i=1}^2 \delta_i u_{k-1-i}^{CCS}\right)$$
where the scalars  $\delta_i$  represent the relative contributions of commands integrated over the WFS sampling time such that  
 $\delta_1 + \delta_2 = 1$ 
• LO order mode removal  
 $s_k^{POLLOR} = (l - s_2 LO) s_k^{POL}$ 
• Tomographic reconstruction  
 $\widehat{\phi_{\beta}} = W s_k^{POLLOR}$   
• Change of space to DM-commands space  
 $u_{\beta}^{LCS} = F_{M4} \widehat{\phi_{\beta}}$ 

# High-order MMSE tomographic reconstruction and pseudo-open-loop control

pseudo-open-loop measurements given by

$$s_k^{POL} = s_k + M\left(\sum_{i=1}^2 \delta_i u_{k-1-i}^{CCS}\right)$$

where the scalars  $\delta_i$  represent the relative contributions of commands integrated over the WFS sampling time such that

 $\delta_1 + \delta_2 = 1$ 

• LO order mode removal

$$s_k^{POL,LOR} = (I - s2LO)s_k^{POL}$$

Tomographic reconstruction

$$w_k = R(s_k + Mp_k)$$

Change of space to DM-commands space

$$u_{\beta}^{LGS} = F_{M4}\widehat{\phi_{\beta}}$$

#### • Vector operation to remove mirror commands previously added in when performing pseudo-open-loop calculation (on step 1)

$$e_{\beta} = u_{\beta}^{LGS} - \sum_{i=1}^{2} \delta_{i} u_{k-1-}^{CCS}$$

• Time filtering through IIR filter

$$\mathbf{u}_{k}^{LGS} = \sum_{i=1}^{m_{ILF}} b_{i} \cdot (e_{\beta})_{j} - \sum_{i=1}^{n_{ILF}} a_{i} \cdot u_{k-i}^{LGS}$$

## High-order MMSE tomographic reconstruction and pseudo-open-loop control



## 1/6<sup>th</sup> of the full problem





## Initial benchmarking

- Pixel Processing followed by POL and Reconstruction, i.e. processing pixels to compute  $s_k$ , then compute  $Mp_k$  and  $Rq_k$  with  $q_k=s_k+Mp_k$  takes 1870  $\mu$ s.
- It motivates the temporal arrangement of operations laid out in the next section.

## **Time sequencing**

### • Case $\delta \ge 1$



## **Time sequencing**

• Case  $\delta = 0$ 



## Benchmarkings

- 7250 Xeon Phi in flat mode quadrant memory
- 4 MPI tasks compatible with the future SNC-4 mode
- #1: POL slopes: ~900µs (with Intel KNL library)
  - If we only consider the reading of the matrix coefficients, the memory bandwidth is then equal to ~250 Gbytes/s. Considering the 450 Gbytes/s theoretical bandwidth, the result is coherent but we can hope to improve this result with a SNC-4 partition
- #2: POL + R
  - Global computation for the POL slopes
  - Stripe computation \*nThreads:
  - Pixel calibration
  - Gradient computation
  - Reference subtraction
  - Projection for the 2 local slopes

• Timings

- 4 threads: 1501µs
- 16 threads: 1520µs
- 32 threads: 1870µs
- 40 threads: 2200µs.

## Benchmarkings

- #2: POL + R
  - Global computation for the POL slopes
  - Stripe computation \*nThreads:
  - Pixel calibration
  - Gradient computation
  - Reference subtraction
  - Projection for the 2 local slopes
- Memory is allocated using a first-touch allocation policy, the nearest memory is used and the affinity between task and memory is then correct.
- Timings~1870µs,
  - POL ~ 800µs
  - Reconstruction ~1070µs.



## **RTC latency: summary**

- Latency
  - Tomographic reconstruction latency ~50µs
  - Vector sending
  - TF node latency ~40µs
  - Vector sending
- 1 node for the POL+R
  - Total estimated latency ~340µs.



## Improvements to pipelinability

- Alternative calculation procedures or redistribution of calculations differently amongst nodes.
  - swapping the POL with the Tomography step may be a fallback solution for the case  $\delta \ge 1$  in case the latency required by the reconstruction proves too large on account of the variable bandwidth requirements
  - Off-load part of the POL computation to the TF node (or use 2 additional customised nodes: since M.vk is benchmarked to take ~850µs, the Time Filtering node could accommodate two such calculations with the loop time of 2ms with two more nodes for the remainder 4 M.vk calculations) POL is partially done in the TF node
    - Latency ~ 690 μs.
  - Use convolutive model to compute M.vk since the interaction matrix M can be well approximated by stencil operations for Shack-Hartmann WFS
  - Replace the POL by pre-computed R\*M which is a 6k x 6x matrix instead of M which is a 6k x 60k matrix

$$w_k = R(s_k + Mp_k) \to w_k = Rs_k + RMp_k$$

## Summary

- 1 node/WFS can handle Pixel Processing + Reconstruction
- 1 node for Time Filtering
- 1 node for supervision
- 1 node for Telemetry Data Recording
- Total=9 nodes
  - Latency: 340µs
  - Jitter: 100µs measured, 40µs (goal) needs further assessment
- SW architecture
  - parallel tasks exchanging messages and data across a 10 Gbits Ethernet network





ACKNOWLEDGEMENTS

The research leading to these results received the support of the A\*MIDEX project (no. ANR-11-IDEX-0001- 02) funded by the "Investissements d'Avenir" French Government program, managed by the French ONERA National Research Agency (ANR)

LABORATOIRE D'ASTROPHYSIQUE

DE MARSEILLE







