
Project #671662 funded by European Commission under program H2020-EU.1.2.2 coordinated in H2020-FETHPC-2014

RTC4AO 2018

Green Flash
AO real-time control with GPUs and FPGAs

Julien BERNARD

RTC4AO 5

Summary

● Architecture solution for ELT AO RTC
● Software solution

– Legacy
– GPU direct & I/O Memory mapping
– Persistent Kernel

● Results
● Conclusion

RTC4AO 5

Architecture solution

RTC4AO 5

RTC concept for ELT AO :
Proposed solution

RTC4AO 5

RTC concept for ELT AO :
Proposed solution

RTC4AO 5

SCAO RTC architecture
SCAO prototype Brahmin

Configuration:
● CPU: Intel i7-5930K 6 cores @ 3.50GHz
● GPU: Nvidia Quadro K6000

15 Multiprocessors @ 902MHz
12 GB GDDR5 @ 288GB/s

● FPGA:
Microgate Xcomp

RTC4AO 5

MCAO RTC architecture

DGX-1

X86

NIC

GPU

GPU

NIC

GPU

GPU

X86

NIC

GPU

GPU

NIC

GPU

GPU

Fast intra-cluster com.
(2x10 GbE)

WFS Pixels (4x10 GbE)

Fast intra-cluster com.
(2x10 GbE)

WFS Pixels (4x10 GbE)

WFS Pixels (4x10 GbE)

MCAO prototype Nirvana
DGX-1 server Configuration:

● CPU: Intel Xeon 40 cores @ 2.2GHz
● GPU: 8 Tesla P100

56 Multiprocessors @ 1.48GHz
16 GB HBM2 @ 732GB/s

RTC4AO 5

Software solution

RTC4AO 5

Legacy solution

RTC4AO 5

Legacy solution timing

Leaves not enough time for computations

RTC4AO 5

Legacy solution jitter

cudaMemcopy() overhead times (5.12Mo in, 64Ko out)

Kernel launches overhead times

Both cases : jitter of 20 to 30 µsec (40 µsec sometimes)

RTC4AO 5

Improvement

GPU direct & IO
Memory mapping

Persistent Kernel

RTC4AO 5

GPU direct & I/O Memory mapping

RTC4AO 5

I/O memory mapping

● The CPU gets the address
of dedicated GPU buffers
and use it to configure the
NIC DMA engine

FPGA NIC

Host
ram

CPU app

Camera control
FPGA control
Meas. Comp.

GPU ram GPU

Camera
protocol
handler

DMA
DMC protocol

handler

DMA

UDP
Offload
Engine Pixels

buffer

DM
com
buffer

DMA

start

P
C
I-
e
3
.
0

DMA
answers

Latency
measurement

DMAmeasures

Pixels
buffer

compute
kernels

● The data are written/read
directly to/from the GPU
memory

RTC4AO 5

I/O memory mapping
implementation

● FPGA need physical address to access GPU
buffers

● Use Nvidia gdrcopy
– Provide kernel module to expose physical address

● Retrieve physical bus address
● Configure FPGA DMA engine

RTC4AO 5

Persistent Kernel

RTC4AO 5

Persistent kernel theory

● Traditional kernel
– Number of block depends on the

problem size
– Data is assigned to a specific block
– Blocks are independent
– GPU scheduler assign remaining

block to available processing cores

● Persistent kernel
– Number of block depends on the

GPU capabilities
– Blocks process data as necessary
– Blocks are all executed

simultaneously
– GPU scheduler is not used after

the initialization

RTC4AO 5

Classic implementation

RTC4AO 5

Persistent kernel implementation

RTC4AO 5

Memory polling

● Detecting data using
unused state
– 10-bit integer on 16-

bit word : 4-bit
remaining

– IEEE 754 float : NaN

● Using extern guard
associate with
specific chunk of data

__device__ uint16_t waitPixel(
const uint16_t volatile * frame

) {
 uint16_t res;

 while ((res = *frame) == 0xfc00);

 return res;
}

GPU

RTC4AO 5

GPU notifying

● GPU need to access
the FPGA register in
order to notify the
command availability

● Require superuser
privilege

1) Get FPGA register address
using Quickplay api

2) Map the address to the
GPU Universal Virtual
Address (UVA) Space

➔ cudaHostRegister()

3) May need to get device
address of register address

➔ cudaHostGetDevicePointer()

RTC4AO 5

Legacy solution

RTC4AO 5

GPU direct , I/O Memory mapping
solution

RTC4AO 5

GPU direct, I/O Memory mapping
& Persistent kernel solution

RTC4AO 5

GPU direct, I/O Memory mapping &
Persistent kernel timing

RTC4AO 5

Results

RTC4AO 5

SCAO case

RTC configuration:
● Perform on a Quadro K6000
● Camera : 262k px @ 1024 fps
● Slope : 5000 (eq 70x70)
● Command : 2048
● 700k iterations

● Results :
● Avg : 1604 µs
● Peak to peak jitter : 52 µs

✔ Computations validated with COMPASS

RTC4AO 5

Time measurement strategies 1/2

3 way measurements
● CUDA event
● C++ std high_resolution_clock
● CUDA clock64

Event & C++ clock show jitter due to
CPU utilization

CUDA clock only depend on GPU
execution

RTC4AO 5

Time measurement strategies 2/2

Compared to FPGA timing, clock
timing is still relevant:
● Doesn’t hide jitter
● Small error: 20µs max + FPGA

overhead

RTC4AO 5

LTAO & MCAO

RTC configuration :
● LTAO

● 6 wfs x 10k slopes
● 5k commands
● 4 devices

● MCAO
● 6 wfs x 10k slopes
● 15k commands
● 8 devices

RTC4AO 5

Float vs half (float 16)

Matrix vector computation
using IEEE 754-2008 16-bit
floating point

● Need to use vectorized half:
half2 for performance
– Each thread compute

element two by two
– CUDA support all operations

● Simple arithmetic
● FMA (Multiply-add)
● Math functions (exp, log, trigo.)

RTC4AO 5

Conclusion

● Using GPU direct & Persistent kernel: avoid all
CPU constraints
– No shielding
– No real time OS

● Our solution is real time by design

Project #671662 funded by European Commission under program H2020-EU.1.2.2 coordinated in H2020-FETHPC-2014

Thank you

Question ?

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33

