Understanding Advanced Virgo noise

Michał Wąs

LAPP/IN2P3 - Annecy

Advanced Virgo full noise budget

Noise budget basics

Usually consider linear coupling

noise contribution to strain = $TF_{\text{coupling function}} \times S_{\text{noise level}}$

- Coupling function *TF*_{coupling function}
 - modeled
 - modeled with factors measured online frequency noise (losses & assymetry)
 - measured through noise injections angular noise
- Noise level Snoise level
 - modeled shot noise
 - measured offline DAC noise
 - measured online with auxiliary channels angular noise
- Add in quadrature all the noise contributions

Building a complete interferometer model

- Construct a simulink diagram of the interferometer
- Double pendulum to model suspensions
- Use simulation to compute optical response
- Include many degrees of freedom:
 - DARM: differential arm length
 - CARM: common arm length / laser frequency
 - MICH: Michelson
 - PRCL: power recycling cavity length

ITF model \rightarrow a rough calibration of DARM into h(t)

Matches well proper data calibration

Advanced Virgo full noise budget

Advanced Virgo main limitations

Demodulation phase noise - a bilinear coupling

$$\delta I(t) = Q(t) \times \delta \phi(t)$$

Large offset an issue

⇒ Uncontrolled degrees of freedom are an issue

Scattered light

- >90% of injected light lost inside the interferometer
 - absorption in mirrors (causes thermal lensing)
 - mirror imperfection
 ⇒ scattered light
 - \Rightarrow put absorbing materials everywhere
- Difficult, measure light phase with 10⁻¹² precision
 - $\Rightarrow~\sim$ 1 photon per second in 100 kW

Scattered light - a non linear coupling

- $\bullet\,\sim\,10\%$ of light detected at various ports
- Non linear coupling of scattering surface motion x(t)

$$n(t) = K \sin\left(\frac{4\pi}{\lambda}x(t)\right)$$

- Move in a controlled way different benches to locate coupling
- In bad weather ground motion at 0.3Hz leads to noise up to 50Hz

Brute force coherence to understand noise drifts

Found correlation

- Track frequency of a moving line
- Correlate with slow monitoring, e.g. temperature
- Automated blind search on thousands of channels

Observed wandering line

GW sensitivity

smallest observable GW amplitude \propto S(f) \times S/N_{threshold}

- Astrophysical triggers, GW models, etc ... changes search parameter space
- \Rightarrow S/N_{threshold} depends on the search hypothesis

Modeled inspiral search

• For modeled search noise is close to Gaussian

Non stationary noise impact depends on GW search type

Unmodeled transient searches are more affected by transient noise

Summary

- Both stationary spectrum and short transients limit detector sensitivity
- Global instrument simulations help understanding cross-coupling
- Shaking instrument in different ways allows to measure coupling
- Looking for time correlations helps finding origin of issues