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RAVE Survey - example use case

● Radial Velocity Experiment, ~ 500,000 spectra of stars 

observed at Anglo-Australian Observatory

● spectra processed with RAVE pipeline (workflow):

● different calibration steps, combining and splitting files,

generating radial velocities, stellar properties, cross-

matching with other catalogues

● data release: mainly tables with 

stellar properties



RAVE Survey - example use case

● Example data table (from querying the RAVE database)
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RAVE: Basic use cases

● Get overview of all processing steps
– workflow/ActivityDescription

– list of activities/activityDescriptions

● Graph representation (visualisation) of these steps
– possible with ProvStore, if provided in W3C serialization format

● Provide detailed information for individual observations
– given a unique identifier for an entry in the published RAVE DR5 

table, return file names and locations of intermediate and raw 
files, how they are linked with each other
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RAVE: Advanced use cases
● Who created the stellar_parameters-table?

– i.e.: get the agent associated with this entity, thus: retrieve details 
for this entity

● Where do the values in column Teff_K come from? In 
which paper are the methods described? The 
uncertainties?

– errors are in additional columns "e..."-something

● Are intermediate files (spectrum png/ascii) for a given 
obsId available? How could I get them?

– Or: who do I need to ask for them?

– Need: permission/accessibility flag, contact details

–
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RAVE: Advanced use cases (continued)
● How are values (for a given star) changing for each data 

release? What's the difference in processing?
– First part can be answered with published data alone, 

provenance only needed for second question.

● Are there multiple observations of the same star?
– If the derived heliocentric radial velocity differs more than the 

error bars suggest: what was causing this difference? (Which 
processing step(s)?)

● What is the coverage of this survey? Compare 
intended/actual coverage for studies of 
completeness/selection effects.

– Needs additional information on failed fibers per field
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Webapp for RAVE provenance

● Testing how to implement the data model

● Simple setup using Django Framework with SQlite3 database

● Define classes “as is”, main provenance classes, 
one DB table for each:

– entity

– activity

– agent

– used -- foreign keys to activity, entity

– wasGeneratedBy -- foreign keys to entity, activity

– wasAssociatedWith -- foreign keys to entity, agent

– hadMember -- foreign keys to entities (one with type collection)

– wasDerivedFrom -- foreign keys to entities



RAVE Provenance webapp

● Django web application (Python)

● Prototype for implementing IVOA ProvenanceDM

● Features:

● implementation of main classes as Django models -> DB tables

● list all instances of a class (Rest API)

● show details for a single object (Rest API)

● ProvSAP access for retrieving provenance for given id

● serialisation of provenance information, IVOA and W3C versions

● visualisation of provenance using javascript

https://github.com/kristinriebe/provenance-rave
https://escience.aip.de/provenance-rave
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Webapp for RAVE provenance



django-prov_vo

● Basic provenance implementation now (mostly) separated 

from RAVE-specific attributes etc.

● => reusable package „django-prov_vo“ (~ abstract classes)

● => all project specific attributes, extensions can be stored in the main app,

=> common provenance implementation can be the same for each webapp

prov_vo

rave
webapp 

cosmosim
webapp



django-prov_vo

● classes in RAVE webapp inherit from basic classes

● e.g.: class RaveActivity(prov_vo.models.Activity)

● still work in progress

Activity RaveActivity

prov_vo
provenance-rave
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ProvSAP - definition

● Interface for retrieving serialized provenance description for a
 given entity/activity/agent ID

● GET request with main parameter “ID”

● Parameters: 

– ID (of entity, activity or agent, can occur multiple times)

– DEPTH (= 1,2,... or ALL)

– RESPONSEFORMAT 
(PROV-N, PROV-JSON, PROV-XML, PROV-VOTable)

– DIRECTION (= BACK or FORTH)

– MEMBERS (include members of collections)

– STEPS (include steps of activityFlows)

– AGENT (explore relations beyond agent)

– MODEL (= IVOA or W3C)

DIRECTION affects only:

● Used

● WasGeneratedBy

● WasDerivedFrom

● WasInformedBy

AGENT – rename?

● EXPLORE_AGENT

● TRACK_AGENT

● AGENT=STOP, 
AGENT=EXPLORE
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ProvSAP - Parameters

● ID

– Identifier for an activity, entity or agent

● RESPONSEFORMAT

– = format of the response

– one of the W3C serialization formats (PROV-JSON, PROV-N, 
PROV-XML) or PROV-VOTable

● DEPTH

– How much of the provenance graph shall be retrieved?

– Everything (DEPTH=ALL) or just the most recent processing steps?

– DEPTH=1: go exactly 1 “relation” backwards

– DEPTH=ALL: services may also restrict to a max. depth instead 
(HTTP 302 redirect to DEPTH=<MAXDEPTH>)
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ProvSAP – Parameter DEPTH

● Example graph with DEPTH=2
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ProvSAP

● Example graph for DEPTH=2
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ProvSAP

● Derivation, Information = short-cut relations

● Proposal:

– redefine DEPTH=1: always go the next entity in the graph

● (stop at agent and collections, if AGENT=false, MEMBERS=false)
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ProvSAP parameters

● DIRECTION = BACK or FORTH

– Allow to track provenance forward, i.e. find out which processes 
used an image, which outputs were produced etc.

– Use cases

● pipeline development

● bug tracking

– Only affects the processing relations:

● Used

● WasGeneratedBy

● WasDerivedFrom

● WasInformedBy

● Because FORTH/BACK makes not much sense for e.g. hadMember 
or wasAttributedTo relations; thus the hierachical/responsibility 
relations are always tracked, independent of DIRECTION
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ProvSAP parameters

● MEMBERS, STEPS = true/false
– Collection groups entities together

=> hadMember relationship

● If tracking members of collections by default, a lot of data is 
returned

● => always follow the relations “up” (to the “container”), but only 
follow the “children”, if MEMBERS=true
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ProvSAP parameters

● AGENT = true/false
– Usually stop tracking when an agent is reached,

but maybe want to know which other activities/entities an agent was 
involved with?

– => allow tracking the agent further, using AGENT=true

● Discussion:

– AGENT = false may be misleading

– Better ideas?
● EXPLORE_AGENT = true/false

● TRACK_AGENT = true/false

● AGENT = STOP/EXPLORE 



23

ProvSAP parameters

● MODEL:
– Allow to choose between IVOA and W3C serialization

– IVOA: 
● directly map the classes to JSON, VOTable, …
● => more direct representation of the data model classes
● For exchange in the VO
● To be used with VO tools, e.g. for loading into a ProvTAP 

service for further querying

– W3C:
● rename and restructure classes and attributes to produce 

W3C compatible serialization
● For exchange with the world outside of the VO
● For usage with W3C tools (e.g. ProvStore)
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ProvSAP implementation

● Live version for RAVE:

– https://escience.aip.de/provenance-rave

● Decoupled django-prov_vo package as reusable web app:

– https://github.com/kristinriebe/django-prov_vo

and an extra package for the VOSI resources 
(availability/capabilities):

– https://github.com/kristinriebe/django-vosi
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ProvSAP implementation

● Implemented all parameters from the draft

● Recursive tracking of the relations

● Each visited node of the provenance graph is returned only 
once (It’s a graph, not a tree → loops possible!)

● Allows W3C compatible serialization (model=W3C)

● Formats: PROV-N or PROV-JSON

● Additionally:

– Visualization of provenance (Javascript)

● option RESPONSEFORMAT=GRAPH

– Web form for nice user interface



Automatically generates the ProvSAP GET request URL: https://escience.aip.de/provenance-
rave/provapp/provdal/?ID=rave:20121220_0752m38_089&DEPTH=1&RESPONSEFORMAT=PROV-
JSON&DIRECTION=BACK&MODEL=IVOA&MEMBERS=false&STEPS=false&AGENT=false

mandatory
parameters

ProvSAP webform (prev. called: ProvDAL)

new 
parameter

additional  
option



Summary

● RAVE survey of stellar spectra as use case for provenance

● Many example questions to be answered by provenance

● Simple prototype implementation of the W3C/VO data model is 

possible (but didn't try with a significant fraction of the data)

● ProvSAP implementation works in principle, some details need to 

be decided:

● really allow querying for agent or activity as well?

● always walk the graph until an end node or the next entity is 

reached?

● keep both, IVOA and W3C serialisation?



Questions?
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