Performance Methodology & Tools

M. Haefele, M. Lobet

@ @ Maison de la Simulation

UNMM Acknoledgments: G. Hager, G. Wellein, M.
UNL\H{SH} DE @Wﬂ S
AILLES s
MR £s
unive

Klemm
umvers\te

Observatoire de Paris, October 8 2018

Ingredlents required for performance evaluation
) Mastering the context of the execution
' Profiling and tracing to find hot spots
' Hardware counters
@® Performance models
@ Scalability
» Methodology proposition

Context

Test-case

code coverage : physics, solvers ...
characteristic dimensions : problem size with respect to
cache size

number of occurrence (timestep, iterative method). Impact

of functions is relative.
Compilation environment
Environment variables
Process & threasd pinning
Parallel configuration (running on dedicated resources ?)
Ensure the application is giving the right answer

@ A trace is a collection of events or timestamps e
® A profile is a collection of timings ¢

too = Z (Efo00y — Efo0;,)
#calls

=t & cumulative time spent in routine foo

Q Profiles and traces aquisition

@ Instrumentation (scoreP, gprof): timers and event
collectors automatically inserted in the source code
Needs to recompile the application
Large trace files and large execution time overhead
Precise result
@ Sampling (Viune, Extrae, EZtrace): application execution
is interrupted every ~ 100us and information is stored (call
stack, hardware counters. . .)
No need to recompile
Smaller trace files and execution time overhead
Trace analysis potentially more complicated
Sampling rate and test case difficult to tune

@ Pieces of hardware at the core level specific to each
processor

@ Counts specific events (cache misses, flops, cycles...)

@ Enriches traces and profilings with additional information

Routines with the largest execution times in a profile

Scalability: definition

Answers the question: if N resources are used instead of 1, is
the execution time t divided by N ?

@ Speedup

@ Relative efficiency

_ SNy _ 1)
E(N) = ~ Nt(N)
@® S(N) ~ Nor E(N) ~100% = Application scales

® S(N) < N/2or E(N) < 50% = Application does not scale

@ Scalability: Amdhal’s law

Serial as and parallel o fractions of the source code
t(1) = (as + ap)t(1)
Assuming a perfect scaling of the parallel fraction
t(N) = (as + ap/N)t(1)
The speedup reads

1
"~ as+ap/N

Assuming a perfect and unlimited parallel computer

lim S(N) = -

N—oo Qg

Scalability: Amdhal’s law

E T o
[alpha = 25% —
[alpha=1% —

:80% efficiency

/780% efficiencyé
P HEEREE | P

sl b a il L
2 10 26 100 1000
resources

Q Scalability: Strong vs Weak scaling
|

@ Strong scaling: same global problem size when
resources "

= problem size per resource “\, when resources *

@ Weak scaling: global problem size ,* with resources
= same problem size per resource when resources *

m Scalability: Potential issues
|

Load imbalance
Parallelization overhead

®
®
®

Number and size of communications

@ Scalability: presentation

Present performance oriented metrics rather than
speedups
GFlop/s
Simulated time / seconds of simulation time
Number of convergence iterations / seconds of simulation
time
= Enable to exhibit single core or single node optimization
Separate intra-node from inter-node scalability

EJ Methodology

1. Single core optimisation
Find hotspots and measure performance
Code improvement (vectorisation, memory access, ...)
2. Single node/socket optimisation
Find hotspots and measure OpenMP overhead / imbalance
Code improvement (OpenMP, NUMA, ...)
3. Inter nodes optimisation

Find hotspots and measure MPI overhead / imbalance
Code improvement (Com pattern, parall. overhead, ...)

Tools for measuring performance
Some existing tools
Tools used during this training

®
®

@ A very large ecosystem

Compiler
@ Vectorization report
@ Optimization report

Tools based on instrumentation
@ gprof (with some sampling...)
@ Scalasca/ScoreP
® Tau
@ ITAC

@ A very large ecosystem

Tools based on sampling
@ Extrae, Dimemas
©® VTune, IPM, advisor
@ Inspector, threadspotter
@ EZtrace
@ Allinea Opt, Map, perf report
©® Darshan

Q A very large ecosystem

Visualization
@ Vampir (ScoreP trace)
@ Vite (EZtrace)
@ Cube (Scalasca post-processing)
@ Paraver (Extrae trace)
Hardware counter
@® Likwid
@ PAPI
Others
@ MACAO (static analysis)

@ |ACA/SDE (emulator)

