
Performance Methodology & Tools

Observatoire de Paris, October 8 2018

M. Haefele, M. Lobet

Maison de la Simulation

Acknoledgments: G. Hager, G. Wellein, M.

Klemm

Outline

Ingredients required for performance evaluation
Mastering the context of the execution
Profiling and tracing to find hot spots
Hardware counters
Performance models
Scalability
Methodology proposition

Context

Test-case
code coverage : physics, solvers . . .
characteristic dimensions : problem size with respect to
cache size
number of occurrence (timestep, iterative method). Impact
of functions is relative.

Compilation environment
Environment variables
Process & threasd pinning
Parallel configuration (running on dedicated resources ?)
Ensure the application is giving the right answer
. . .

Profiling and tracing

A trace is a collection of events or timestamps e
A profile is a collection of timings t

tfoo =
∑
#calls

(efooout − efooin)

⇒ tfoo ⇔ cumulative time spent in routine foo

Profiles and traces aquisition

Instrumentation (scoreP, gprof): timers and event
collectors automatically inserted in the source code

Needs to recompile the application
Large trace files and large execution time overhead
Precise result

Sampling (Vtune, Extrae, EZtrace): application execution
is interrupted every ∼ 100µs and information is stored (call
stack, hardware counters. . .)

No need to recompile
Smaller trace files and execution time overhead
Trace analysis potentially more complicated
Sampling rate and test case difficult to tune

Hardware counters

Pieces of hardware at the core level specific to each
processor
Counts specific events (cache misses, flops, cycles. . .)
Enriches traces and profilings with additional information

Hot spots

Routines with the largest execution times in a profile

Scalability: definition

Answers the question: if N resources are used instead of 1, is
the execution time t divided by N ?

Speedup

S(N) =
t(1)
t(N)

Relative efficiency

E(N) =
S(N)

N
=

t(1)
Nt(N)

S(N) ∼ N or E(N) ∼ 100%⇒ Application scales
S(N) < N/2 or E(N) < 50%⇒ Application does not scale

Scalability: Amdhal’s law

Serial αs and parallel αp fractions of the source code

t(1) = (αs + αp)t(1)

Assuming a perfect scaling of the parallel fraction

t(N) = (αs + αp/N)t(1)

The speedup reads

S(N) =
t(1)
t(N)

=
1

αs + αp/N

Assuming a perfect and unlimited parallel computer

lim
N→∞

S(N) =
1
αs

Scalability: Amdhal’s law

1

10

100

1000

1 10 100 1000 10000

S
pe

ed
up

resources

alpha = 25%
alpha = 1%

ideal

2 26

80% efficiency

80% efficiency

Scalability: Strong vs Weak scaling

Strong scaling: same global problem size when
resources↗

⇒ problem size per resource↘ when resources↗

Weak scaling: global problem size↗ with resources
⇒ same problem size per resource when resources↗

Scalability: Potential issues

Load imbalance
Parallelization overhead
Number and size of communications

Scalability: presentation

Present performance oriented metrics rather than
speedups

GFlop/s
Simulated time / seconds of simulation time
Number of convergence iterations / seconds of simulation
time

⇒ Enable to exhibit single core or single node optimization
Separate intra-node from inter-node scalability

Methodology

1. Single core optimisation
Find hotspots and measure performance
Code improvement (vectorisation, memory access, . . .)

2. Single node/socket optimisation
Find hotspots and measure OpenMP overhead / imbalance
Code improvement (OpenMP, NUMA, . . .)

3. Inter nodes optimisation
Find hotspots and measure MPI overhead / imbalance
Code improvement (Com pattern, parall. overhead, . . .)

Outline: Tools

Tools for measuring performance
Some existing tools
Tools used during this training

A very large ecosystem

Compiler
Vectorization report
Optimization report

Tools based on instrumentation
gprof (with some sampling. . .)
Scalasca/ScoreP
Tau
ITAC

A very large ecosystem

Tools based on sampling
Extrae, Dimemas
VTune, IPM, advisor
Inspector, threadspotter
EZtrace
Allinea Opt, Map, perf report
Darshan

A very large ecosystem

Visualization
Vampir (ScoreP trace)
Vite (EZtrace)
Cube (Scalasca post-processing)
Paraver (Extrae trace)

Hardware counter
Likwid
PAPI

Others
MACAO (static analysis)
IACA/SDE (emulator)

