Computing architectures

M. Haefele, M. Lobet

- Maison de la Simulation

INVENTEURS DU HONDE NUNERIQUE

< e Acknoledgments: G. Hager, G. Wellein, M.
P PARIS
SUD

Klemm

universite

Observatoire de Paris, October 8 2018

Why this course ?

Why are you sitting here ?

EJ Purpose of this course

Why is it important to measure performance ?

During code optimization process, "measuring is better
than guessing”, Brian Wylie, developer of Scalasca

Why is it important to have an optimized code ?
To get results faster

To ensure the best utilization of High Performance
Computing (HPC) infrastructures

To get access to HPC infrastructures

@ HPC architectures & performance bottlenecks
Performance evaluation concepts & methodology
' Presentation of the code under study
@ Scalasca
@ Optimisation at the core level
) VTune / Advisor

Lore 1
In a world of highly parallel computer architectures only highly
scalable codes will survive

Lore 2
Single core performance no longer matters since we have so
many of them and use scalable codes

I$OMP PARALLEL DO IIIIIII

1, Nk

do k =
do j 1, Nj; doi =1, Ni
y(i,j,k)= b*(x(i—1,j,k)+ x(i+1,j,k)+ x(i,j—1,k)+
X(i,j+1,k)+ x(i,j,k=1)+ x(i,j,k+1))
enddo; enddo
enddo

3D Stencil Update
~ ("Jacobi")

o\ [=8 Version 1
— @ Version 2

#eores

I$OMP PARALLEL DO

do k =
do |
y (i

]
1, Nk

1, Nj;doi =1, Ni
i k)= b(x(i—1,j,K)+ x(i+1,j,k)+ x(i,j—1,k)+
x(i,j+1,K)+ x(i,j, k=1)+ x(i,j,k+1))
enddo; enddo
enddo

3D Stencil Update
("Jacobi")

:

®-e Version 2 - Prepared for
the highly
parallel era!

#eores

I$OMP PARALLEL DO IIIIIII

1, Nk

do k =
do j 1, Nj; doi =1, Ni
y(i,j,k)= b*(x(i—1,j,k)+ x(i+1,j,k)+ x(i,j—1,k)+
X(i,j+1,k)+ x(i,j,k=1)+ x(i,j,k+1))
enddo; enddo
enddo

3D Stencil Update
("Jacobi")

Performance [MLUP/s!

Single core/socket efficiency
is key issue!

HPC is not only about scalability !

HPC is about running at the bottleneck of the hardware !

Hierarchical studies for hierarchical architectures

- Core: Computing unit
@ Node: Shared memory unit
@ Communications: Distributed memory environment
® Input/Output: File system access

Outline

' Recent CPU architectures
General architecture of a cached based processor
Pipeline
Superscalar processors (ILP)
Simultaneous multi-threading (SMT)
Single Instruction Multiple Data (SIMD)
Memory hierarchy
UMA vs ccNUMA
Peak performance

" Intel Xeon Phi KNL (RIP)
' IBM OpenPower: IBM Power CPU + NVidia GPU
» Comparison

m Moore’s law and parallelism

35 YEARS OF MICROPROCESSOR TREND DATA

7
10 Transistors

& (thousands)
10"+

5
10"
Single-thread
4 Performance
10 (SpecINT)

Frequency
(MHz)

Typical Power
(Watts)

Number of
Cores

1975 1980 1985 1990 1995 2000 2005 2010 2015

Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten
Dotted line extrapolations by C. Moore

Node-Level Performance Engineering
http://goo.gl/4kS16

Georg Hager, Gerhard Wellein
Erlangen Regional Computing Center
University of Erlangen-Nuremberg

Two-day short course
LRZ Garching
3./4.12.2013

http://goo.gl/4kS16

General-purpose cache based microprocessor core

= (Almost) the same basic design in all modern systems

Main memory

L2 unified cache

L1 data
cache

interface

Memory queue

INT reg. file

L1 instr.
cache

INT/FP queue

FP reg. file

Not shown: most of the control unit, e.g. instruction fetch/decode, branch prediction,...

(c) RRZE 2013

Basic Architecture

13

Pipelining of arithmetic/functional units rr?:

" |dea:
= Split complex instruction into several simple / fast steps (stages)
= Each step takes the same amount of time, e.g. a single cycle
= Execute different steps on different instructions at the same time (in parallel)

= Allows for shorter cycle times (simpler logic circuits), e.g.:
= floating point multiplication takes 5 cycles, but
= processor can work on 5 different multiplications simultaneously
= one result at each cycle after the pipeline is full

= Drawback:
= Pipeline must be filled - startup times (#Instructions >> pipeline steps)

= Efficient use of pipelines requires large number of independent instructions =
instruction level parallelism

= Requires complex instruction scheduling by compiler/hardware — software-
pipelining / out-of-order

= Pipelining is widely used in modern computer architectures

(c) RRZE 2013 Basic Architecture 14

5-stage Multiplication-Pipeline: A(i)=B(i)*C(i) ; i=1,...,N rrEE

1 2 3 4 5 N N-+1 N+2 N+3 N+4
Cycle
Separate B(l1)| | B(2)| | B(3)| | B(4)| | B(5) B (N) % q
mant./exp. C{1)| | €(2)| | C(3)]| | C(4)]| | C€(5) o C(N) Wind-down
Multiply B(1)| | B(2)| | B(3)| | B(4) B-1)| | B(N)
mantissas c(1) C(2) C(3) C(4) T cm-1) | C(N)
Add B(1)| | B(2)| | B(3) B(N-2)| |B(N-1)| | B(N)
exponents C{l) Cc(2) C(3) T cn-2)| |cin-1y| | C{N)
Normalize A A A
result RO TREY o say| | v—2y| | ve1y] | ROD
Insert Wind-up A A A A
o - RO | | ey | (o3| | -2)| | a1y | 26D

First result is available after 5 cycles (=latency of pipeline)!
Wind-up/-down phases: Empty pipeline stages

(c) RRZE 2013 Basic Architecture 15

Pipelining: The Instruction pipeline rr7|:

= Besides arithmetic & functional unit, instruction execution itself is
pipelined also, e.g.: one instruction performs at least 3 steps:

Fetch Instruction Decode
from L1l Instruction

1 Fetch Instruction 1
from L1l
2Al Fetch Instruction 2 Decode
. from L11 Instruction 1
Il Fetch Instruction 3 Decode
3 from L1l Instruction 2
Il Fetch Instruction 4 Decode
4 ! from L1I Instruction 3

Branches can stall this pipeline! (Speculative Execution, Predication)
Each unit is pipelined itself (e.g., Execute = Multiply Pipeline)

(c) RRZE 2013 Basic Architecture 16

]] ﬁ—
Superscalar Processors — Instruction Level Parallelism rri:

Multiple units enable use of Instrucion Level Parallelism (ILP):
Instruction stream is “parallelized” on the fly

I__n-l-r\ln lnectvriintian 1
Fr\'l-r\lf\ lnectriintinn D

Fn'l'nln lnectriintinn 9D 4-Way

: Fetch Instruction 1 &8 - y
- arnda ,superscalar
b fomlll Eeeessdes \ P

. Fetch Instruction 5 Decode
| from L1l Instruction 1

-AOTAN TNCTrIINTINN Z IR VaYalaVYala)

' Fetch Instruction 9 Decode
| from L1l Instruction 5

AOTAN TNCTriiIiNTINN /i IR VaYalaVYala)

A\ Fetch Instruction 13 Decode
from L1l Instruction 9

I'_‘

Issuing m concurrent instructions per cycle: m-way superscalar

Modern processors are 3- to 6-way superscalar &
can perform 2 floating point instructions per cycles

(c) RRZE 2013 Basic Architecture 17

Core details: Simultaneous multi-threading (SMT)

SMT principle (2-way example):

Q
: [
S []] — L2 cache —
-]
s of o
[Q°)
s L]
Memory

= N7 %%
; [] %DD Z 12 cache/;/;
> NI IYIT;]
© N~ V0
= L // 7.)
N A 7mn

Memo Zﬁ @%%

%%,

(c) RRZE 2013

h—
[T !

: L1D :*-l—'- Registers _:Djj:'_ g
cache i — I— &
N | =

mea N o -

T 3

L e o
cache Y w
| | | J=—=[control = [[—

i
) i, [——

7 L1D — xFie |sters)

£ - //////////////9’ A =

_ cache A 1 — s
7% K

|] | 2
%0 5

7 Ll e 2

gcacheZ W

727 *—-FVC‘*"""')

Basic Architecture 18

Core details: SIMD processing

= Single Instruction Multiple Data (SIMD) operations allow the
concurrent execution of the same operation on “wide” registers
= x86 SIMD instruction sets:

= SSE: register width = 128 Bit = 2 double precision floating point operands
= AVX: register width = 256 Bit = 4 double precision floating point operands

= Adding two registers holding double precision floating point
operands

RO R1 R2 RO R1 R2
F [— [—

SIMD execution:
V64ADD [RO,R1] =2R2

Scalar execution:;
R2< ADD [RO,R1]

B[O]
C[O]

ol

(c) RRZE 2013

Basic Architecture

19

Registers and caches: Data transfers in a memory hierarchy rr?:
= How does data travel from memory to the CPU and back?

= Remember: Caches are organized
in cache lines (e.g., 64 bytes)

= Only complete cache lines are
transferred between memory
hierarchy levels (except registers)

= MISS: Load or store instruction does
not find the data in a cache level
- CL transfer required

FHIT

write| |evict
allocate| [(delayed)

3CL
transfers

= Example: Array copy A(:)=C(:)

(c) RRZE 2013 Basic Architecture 20

From UMA to ccNUMA =
. . . . I
Basic architecture of commodity compute cluster nodes rrl__

Yesterday (2006): Dual-socket Intel “Core2” node:

P P P P

L1D L1D
L2

Uniform Memory Architecture (UMA)

L1D L1D
L2

Flat memory ; symmetric MPs

But: system “anisotropy”
{ Memory }

__

Cache-coherent Non-Uniform Memory
z e lle ezl izl Architecture (cCNUMA)

I wenonymismaes == wemen e ! T / OP| provide scalable bandwidth at the
price of ccNUMA architectures: Where
[TR } [e does my data finally end up?

On AMD it is even more complicated = ccNUMA within a socket!

(c) RRZE 2013 Basic Architecture 21

There is no single driving force for chip performance! rr?:

:T1 T2||T1 | T2||T1 | T2||T1 | T2||T1 | T2||T1 | T2||T1 | T2||T1 T2: Floating Point (FP) Performance:
PP [P||P|P|P|P|P| _ % %
| | e S e P =MNeore "F 5 STV
: L3 i
:| Memory Interface ! Neore number of cores: 8
F FP instructions per cycle: 2
{ Memory } (1 MULT and 1 ADD)
Intel Xeon S FP ops /instruction: 4 (dp) / 8 (sp)
“Sandy Bridge EP” socket (256 Bit SIMD registers — “AVX”)

4,6,8 core variants available v Clock speed : «2.7 GHz

TOP500 rank 1 (mid-90s) ’\ P =173 GF/s (dp) / 346 GF/s (sp)

‘ But: P=5.4 GF/s for serial, non-SIMD code \

(c) RRZE 2013 Basic Architecture 24

Parallelism in a modern compute node rr7|:

B PYP| P o PIPIPIP [olns
i L1D L1D L1D 4[9‘ i i L1D L1D L1D L1D i @
i - = L3 = i i = = L3 6 = : Other 1/0

‘ Memory ‘ { Memory }
Parallel resources: Shared resources:
= Execution/SIMD units € = Outer cache level per socket

= Cores @

= Inner cache levels 6
= Sockets / ccNUMA domains @)
= Multiple accelerators @

Memory bus per socket @)
Intersocket link Q

PCle bus(es) Q

Other 1/O resources @

How does your application react to all of those details?

(c) RRZE 2013 Basic Architecture 32

Parallel programming models: rr—l—

Pure MPI

= Machine structure is invisible to user:

= = Very simple programming model >

= - MPI “knows what to do”!?

= Performance issues

= [ntranode vs. internode MPI
= Node/system topology

vommunication network

(c) RRZE 2013 Basic Architecture

34

Parallel programming models:
Pure threading on the node

= Machine structure is invisible to user

= = Very simple programming model >

= Threading SW (OpenMP, pthreads,
TBB,...) should know about the details

= Performance issues
= Synchronization overhead
= Memory access
= Node topology

fork ™~

join ¥

PP P(P P P | P | P
i LID L1D L1=J LID i LID L1D L1D L1D i
1D L2 R | 1 i} L2 L2 Lz ||
JEY JSSSSSSSNY W | I | = ‘
‘ . coherent |

link

Memory -e L“\“““\L&\L Memory

(c) RRZE 2013 Basic Architecture

ﬁ—
[T ==
master thread
\ 4
~
N pargllel
region
\ 4
J
™
_ serial
region
\ 4 /)
team of
\ 4 threads
\ 4
35

Parallel programming models: Lots of choices — —
Hybrid MP1+OpenMP on a multicore multisocket cluster r r

One MPI process / node

One MPI process / socket:
OpenMP threads on same
socket: “blockwise”

OpenMP threads pinned
“round robin” across
cores in node

Two MPI processes / socket
OpenMP threads
on same socket

(c) RRZE 2013 Basic Architecture 36

File systems

Shared resources = your job can be affected by another
job running next to it

Different file systems on a single HPC platform

Home: back-uped, low performance
Work: back-uped or not, medium-high performance
Scratch: no back-up, high performance

ASCII vs binary output
Serial vs parallel IO
File system bandwidth reachable vs total bandwidth

KNL Architecture Overview x4 DMI2 to PCH

36 Lanes PCle* Gen3 (x16, x16, x4)

ISA
Intel® Xeon® Processor Binary-Compatible (w/Broadwell)

On-package memory
Up to 16GB, ~500 GB/s STREAM at launch

Platform Memory I

Up to 384GB (6¢ch DDR4-2400 MHz)
Fixed Bottlenecks

v' 2D Mesh Architecture

v’ Qut-of-Order Cores

v 3x single-thread vs. KNC I I
TILE: 2vPu AYB oypy
(up to ‘ TMB DDRA4 DDR4

306) Core L2 Core

Enhanced Intel® Atom™ cores based on
Silvermont™ Microarchitecture

~_ Tile n EDC (embedded DRAM - IMC (integrated memory - 1O (integrated |/O controller)
controller controller

/
|
|
I
I
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
i
|
|
|
|
I
|
|
I
I
|
|
|
|
|
|
|
|
|
\

MCDRAM MCDRAM

Intel, Xeon, Xeon Phi, and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. * Other names and brands may be

claimed as the property of others. All products, dates, and figures are preliminary and are subject to change without any notice. Copyright © 2016, Intel Corporation.

NVLINK TO CPU

Fully connected quad $: o
:m-—- CPU
120 GB/s per GPU bidirectional for peer traffic]

40 GB/s per GPU bidirectional to CPU

—— P100 P100 <+——
Direct Load/store access to CPU Memory

High Speed Copy Engines for bulk data movement

P100 P100

4+—p PCle
4—p CPU

16 NVIDIA.

Registers

Caches

On-chip Memor
DRAM

NVRAM

Storage

EJ Architecture comparison

Device

2x Skylake
8168

Intel KNL 7250

NVidia P100

Xilinx XCVU9P

Techno.

14nm

14nm

16nm

16nm

Freq.

2.7 GHz

1.4 GHz

1.5 GHz

0.1-0.5 GHz

Power

410W

215W

300W

< 50W

#cores

48

68

35847

N.A

Cache

57 MiB

34 MiB

18 MiB

62 MiB

Fast mem

N.A.

16 GB

16 GB HBM

8?7 GB HBM

Mem

128-512 GB

384 GB

N.A.

48GB

Peak perf. (DB)

2 TF/s

2 TF/s

5.3 TF/s

> 0.5TF/s

FPGA: similar performance for 10x less energy !

