
Computing architectures

Observatoire de Paris, October 8 2018

M. Haefele, M. Lobet

Maison de la Simulation

Acknoledgments: G. Hager, G. Wellein, M.

Klemm

Why this course ?

Why are you sitting here ?

Purpose of this course

Why is it important to measure performance ?
⇒ During code optimization process, ”measuring is better

than guessing”, Brian Wylie, developer of Scalasca

Why is it important to have an optimized code ?
⇒ To get results faster
⇒ To ensure the best utilization of High Performance

Computing (HPC) infrastructures
⇒ To get access to HPC infrastructures

Outline

HPC architectures & performance bottlenecks
Performance evaluation concepts & methodology
Presentation of the code under study
Scalasca
Optimisation at the core level
VTune / Advisor

Debunking ideas

Lore 1
In a world of highly parallel computer architectures only highly

scalable codes will survive

Lore 2
Single core performance no longer matters since we have so

many of them and use scalable codes

Debunking ideas

!$OMP PARALLEL DO
do k = 1 , Nk

do j = 1 , Nj ; do i = 1 , Ni
y (i , j , k)= b∗ (x (i −1, j , k)+ x (i +1 , j , k)+ x (i , j −1,k)+

x (i , j +1 ,k)+ x (i , j , k−1)+ x (i , j , k +1))
enddo ; enddo

enddo

Debunking ideas

!$OMP PARALLEL DO
do k = 1 , Nk

do j = 1 , Nj ; do i = 1 , Ni
y (i , j , k)= b∗ (x (i −1, j , k)+ x (i +1 , j , k)+ x (i , j −1,k)+

x (i , j +1 ,k)+ x (i , j , k−1)+ x (i , j , k +1))
enddo ; enddo

enddo

Debunking ideas

!$OMP PARALLEL DO
do k = 1 , Nk

do j = 1 , Nj ; do i = 1 , Ni
y (i , j , k)= b∗ (x (i −1, j , k)+ x (i +1 , j , k)+ x (i , j −1,k)+

x (i , j +1 ,k)+ x (i , j , k−1)+ x (i , j , k +1))
enddo ; enddo

enddo

Debunking ideas

HPC is not only about scalability !

HPC is about running at the bottleneck of the hardware !

Bottlenecks

Hierarchical studies for hierarchical architectures
Core: Computing unit
Node: Shared memory unit
Communications: Distributed memory environment
Input/Output: File system access

Outline

Recent CPU architectures
General architecture of a cached based processor
Pipeline
Superscalar processors (ILP)
Simultaneous multi-threading (SMT)
Single Instruction Multiple Data (SIMD)
Memory hierarchy
UMA vs ccNUMA
Peak performance

Intel Xeon Phi KNL (RIP)
IBM OpenPower: IBM Power CPU + NVidia GPU
Comparison

Moore’s law and parallelism

Node-Level Performance Engineering

Georg Hager, Gerhard Wellein

Erlangen Regional Computing Center

University of Erlangen-Nuremberg

Two-day short course

LRZ Garching

3./4.12.2013

http://goo.gl/4kS16

http://goo.gl/4kS16

General-purpose cache based microprocessor core

 (Almost) the same basic design in all modern systems

(c) RRZE 2013 Basic Architecture

Not shown: most of the control unit, e.g. instruction fetch/decode, branch prediction,…

13

Pipelining of arithmetic/functional units

 Idea:
 Split complex instruction into several simple / fast steps (stages)

 Each step takes the same amount of time, e.g. a single cycle

 Execute different steps on different instructions at the same time (in parallel)

 Allows for shorter cycle times (simpler logic circuits), e.g.:
 floating point multiplication takes 5 cycles, but

 processor can work on 5 different multiplications simultaneously

 one result at each cycle after the pipeline is full

 Drawback:
 Pipeline must be filled - startup times (#Instructions >> pipeline steps)

 Efficient use of pipelines requires large number of independent instructions
instruction level parallelism

 Requires complex instruction scheduling by compiler/hardware – software-
pipelining / out-of-order

 Pipelining is widely used in modern computer architectures

(c) RRZE 2013 Basic Architecture 14

5-stage Multiplication-Pipeline: A(i)=B(i)*C(i) ; i=1,...,N

Wind-up/-down phases: Empty pipeline stages

First result is available after 5 cycles (=latency of pipeline)!

(c) RRZE 2013 Basic Architecture 15

Pipelining: The Instruction pipeline

 Besides arithmetic & functional unit, instruction execution itself is

pipelined also, e.g.: one instruction performs at least 3 steps:

Fetch Instruction

from L1I

Decode

instruction

Execute

Instruction

Fetch Instruction 1

from L1I

Decode

Instruction 1

Execute

Instruction 1

Fetch Instruction 2

from L1I

Decode

Instruction 2

Decode

Instruction 3

Execute

Instruction 2

Fetch Instruction 3

from L1I

Fetch Instruction 4

from L1I

t

…

 Branches can stall this pipeline! (Speculative Execution, Predication)

 Each unit is pipelined itself (e.g., Execute = Multiply Pipeline)

1

2

3

4

(c) RRZE 2013 Basic Architecture 16

 Multiple units enable use of Instrucion Level Parallelism (ILP):

Instruction stream is “parallelized” on the fly

 Issuing m concurrent instructions per cycle: m-way superscalar

 Modern processors are 3- to 6-way superscalar &

can perform 2 floating point instructions per cycles

Superscalar Processors – Instruction Level Parallelism

Fetch Instruction 4

from L1I

Decode

Instruction 1

Execute

Instruction 1

Fetch Instruction 2

from L1I

Decode

Instruction 2

Decode

Instruction 3

Execute

Instruction 2

Fetch Instruction 3

from L1I

Fetch Instruction 4

from L1I

Fetch Instruction 3

from L1I

Decode

Instruction 1

Execute

Instruction 1

Fetch Instruction 2

from L1I

Decode

Instruction 2

Decode

Instruction 3

Execute

Instruction 2

Fetch Instruction 3

from L1I

Fetch Instruction 4

from L1I

Fetch Instruction 2

from L1I

Decode

Instruction 1

Execute

Instruction 1

Fetch Instruction 2

from L1I

Decode

Instruction 2

Decode

Instruction 3

Execute

Instruction 2

Fetch Instruction 3

from L1I

Fetch Instruction 4

from L1I

Fetch Instruction 1

from L1I

Decode

Instruction 1

Execute

Instruction 1

Fetch Instruction 5

from L1I

Decode

Instruction 5

Decode

Instruction 9

Execute

Instruction 5

Fetch Instruction 9

from L1I

Fetch Instruction 13

from L1I

4-way

„superscalar“

t

(c) RRZE 2013 Basic Architecture 17

Core details: Simultaneous multi-threading (SMT)

(c) RRZE 2013 Basic Architecture

St
an

d
ar

d
 c

o
re

2

-w
ay

 S
M

T

SMT principle (2-way example):

18

Core details: SIMD processing

 Single Instruction Multiple Data (SIMD) operations allow the

concurrent execution of the same operation on “wide” registers

 x86 SIMD instruction sets:

 SSE: register width = 128 Bit 2 double precision floating point operands

 AVX: register width = 256 Bit 4 double precision floating point operands

 Adding two registers holding double precision floating point

operands

(c) RRZE 2013 Basic Architecture
A

[0
]

A
[1

]
A

[2
]

A
[3

]

B
[0

]
B

[1
]

B
[2

]
B

[3
]

C
[0

]
C

[1
]

C
[2

]
C

[3
]

A
[0

]

B
[0

]

C
[0

]

64 Bit

256 Bit

+ +

+

+

+

R0 R1 R2 R0 R1 R2

Scalar execution:

R2 ADD [R0,R1]

SIMD execution:

V64ADD [R0,R1] R2

19

Registers and caches: Data transfers in a memory hierarchy

 How does data travel from memory to the CPU and back?

 Remember: Caches are organized

in cache lines (e.g., 64 bytes)

 Only complete cache lines are

transferred between memory

hierarchy levels (except registers)

 MISS: Load or store instruction does

not find the data in a cache level

 CL transfer required

 Example: Array copy A(:)=C(:)

(c) RRZE 2013 Basic Architecture

CPU registers

Cache

Memory

CL

CL CL

CL

LD C(1)

MISS

ST A(1) MISS

write
allocate

evict
(delayed)

3 CL

transfers

LD C(2..Ncl)
ST A(2..Ncl)

HIT

C(:) A(:)

20

Today: Dual-socket Intel (Westmere,…) node:

Yesterday (2006): Dual-socket Intel “Core2” node:

Uniform Memory Architecture (UMA)

Flat memory ; symmetric MPs

But: system “anisotropy”

Cache-coherent Non-Uniform Memory

Architecture (ccNUMA)

HT / QPI provide scalable bandwidth at the

price of ccNUMA architectures: Where

does my data finally end up?

On AMD it is even more complicated ccNUMA within a socket!

From UMA to ccNUMA
Basic architecture of commodity compute cluster nodes

(c) RRZE 2013 21 Basic Architecture

There is no single driving force for chip performance!

Floating Point (FP) Performance:

P = ncore * F * S * n

ncore number of cores: 8

F FP instructions per cycle: 2

 (1 MULT and 1 ADD)

S FP ops / instruction: 4 (dp) / 8 (sp)

 (256 Bit SIMD registers – “AVX”)

n Clock speed : ∽2.7 GHz

P = 173 GF/s (dp) / 346 GF/s (sp)

(c) RRZE 2013 24 Basic Architecture

Intel Xeon

“Sandy Bridge EP” socket

4,6,8 core variants available

But: P=5.4 GF/s for serial, non-SIMD code

TOP500 rank 1 (mid-90s)

Parallelism in a modern compute node

 Parallel and shared resources within a shared-memory node

GPU #1

GPU #2
PCIe link

 Parallel resources:

 Execution/SIMD units

 Cores

 Inner cache levels

 Sockets / ccNUMA domains

 Multiple accelerators

 Shared resources:

 Outer cache level per socket

 Memory bus per socket

 Intersocket link

 PCIe bus(es)

 Other I/O resources

Other I/O

1

2

3

4 5

1

2

3

4

5

6

6

7

7

8

8

9

9

10

10

How does your application react to all of those details?

(c) RRZE 2013 Basic Architecture 32

Parallel programming models:
Pure MPI

 Machine structure is invisible to user:

 Very simple programming model

 MPI “knows what to do”!?

 Performance issues

 Intranode vs. internode MPI

 Node/system topology

(c) RRZE 2013 Basic Architecture 34

Parallel programming models:
Pure threading on the node

 Machine structure is invisible to user

 Very simple programming model

 Threading SW (OpenMP, pthreads,

TBB,…) should know about the details

 Performance issues

 Synchronization overhead

 Memory access

 Node topology

(c) RRZE 2013 Basic Architecture 35

Parallel programming models: Lots of choices
Hybrid MPI+OpenMP on a multicore multisocket cluster

One MPI process / node

One MPI process / socket:

OpenMP threads on same

socket: “blockwise”

OpenMP threads pinned

“round robin” across

cores in node

Two MPI processes / socket

OpenMP threads

on same socket

(c) RRZE 2013 36 Basic Architecture

File systems

Shared resources ⇒ your job can be affected by another
job running next to it
Different file systems on a single HPC platform

Home: back-uped, low performance
Work: back-uped or not, medium-high performance
Scratch: no back-up, high performance

ASCII vs binary output
Serial vs parallel IO
File system bandwidth reachable vs total bandwidth

16

NVLINK TO CPU

Fully connected quad

120 GB/s per GPU bidirectional for peer traffic

40 GB/s per GPU bidirectional to CPU

Direct Load/store access to CPU Memory

High Speed Copy Engines for bulk data movement

Memory hierarchy

Registers

Caches

On-chip Memory

DRAM

NVRAM
Storage

S
iz

e

B
an

dw
id

th

La
te

nc
y

new

new

Architecture comparison

Device 2x Skylake
8168

Intel KNL 7250 NVidia P100 Xilinx XCVU9P

Techno. 14nm 14nm 16nm 16nm
Freq. 2.7 GHz 1.4 GHz 1.5 GHz 0.1-0.5 GHz
Power 410W 215W 300W < 50W
#cores 48 68 3584? N.A
Cache 57 MiB 34 MiB 18 MiB 62 MiB
Fast mem N.A. 16 GB 16 GB HBM 8? GB HBM
Mem 128-512 GB 384 GB N.A. 48GB
Peak perf. (DB) 2 TF/s 2 TF/s 5.3 TF/s > 0.5TF/s

FPGA: similar performance for 10x less energy !

