
Computing architectures

Observatoire de Paris, October 8 2018

M. Haefele, M. Lobet

Maison de la Simulation

Acknoledgments: G. Hager, G. Wellein, M.

Klemm

Why this course ?

Why are you sitting here ?

Purpose of this course

Why is it important to measure performance ?
⇒ During code optimization process, ”measuring is better

than guessing”, Brian Wylie, developer of Scalasca

Why is it important to have an optimized code ?
⇒ To get results faster
⇒ To ensure the best utilization of High Performance

Computing (HPC) infrastructures
⇒ To get access to HPC infrastructures

Outline

HPC architectures & performance bottlenecks
Performance evaluation concepts & methodology
Presentation of the code under study
Scalasca
Optimisation at the core level
VTune / Advisor

Debunking ideas

Lore 1
In a world of highly parallel computer architectures only highly

scalable codes will survive

Lore 2
Single core performance no longer matters since we have so

many of them and use scalable codes

Debunking ideas

!$OMP PARALLEL DO
do k = 1 , Nk

do j = 1 , Nj ; do i = 1 , Ni
y (i , j , k)= b∗ (x (i −1, j , k)+ x (i +1 , j , k)+ x (i , j −1,k)+

x (i , j +1 ,k)+ x (i , j , k−1)+ x (i , j , k +1))
enddo ; enddo

enddo

Debunking ideas

!$OMP PARALLEL DO
do k = 1 , Nk

do j = 1 , Nj ; do i = 1 , Ni
y (i , j , k)= b∗ (x (i −1, j , k)+ x (i +1 , j , k)+ x (i , j −1,k)+

x (i , j +1 ,k)+ x (i , j , k−1)+ x (i , j , k +1))
enddo ; enddo

enddo

Debunking ideas

!$OMP PARALLEL DO
do k = 1 , Nk

do j = 1 , Nj ; do i = 1 , Ni
y (i , j , k)= b∗ (x (i −1, j , k)+ x (i +1 , j , k)+ x (i , j −1,k)+

x (i , j +1 ,k)+ x (i , j , k−1)+ x (i , j , k +1))
enddo ; enddo

enddo

Debunking ideas

HPC is not only about scalability !

HPC is about running at the bottleneck of the hardware !

Bottlenecks

Hierarchical studies for hierarchical architectures
Core: Computing unit
Node: Shared memory unit
Communications: Distributed memory environment
Input/Output: File system access

Outline

Recent CPU architectures
General architecture of a cached based processor
Pipeline
Superscalar processors (ILP)
Simultaneous multi-threading (SMT)
Single Instruction Multiple Data (SIMD)
Memory hierarchy
UMA vs ccNUMA
Peak performance

Intel Xeon Phi KNL (RIP)
IBM OpenPower: IBM Power CPU + NVidia GPU
Comparison

Moore’s law and parallelism

Node-Level Performance Engineering

Georg Hager, Gerhard Wellein

Erlangen Regional Computing Center

University of Erlangen-Nuremberg

Two-day short course

LRZ Garching

3./4.12.2013

http://goo.gl/4kS16

http://goo.gl/4kS16

General-purpose cache based microprocessor core

 (Almost) the same basic design in all modern systems

(c) RRZE 2013 Basic Architecture

Not shown: most of the control unit, e.g. instruction fetch/decode, branch prediction,…

13

Pipelining of arithmetic/functional units

 Idea:
 Split complex instruction into several simple / fast steps (stages)

 Each step takes the same amount of time, e.g. a single cycle

 Execute different steps on different instructions at the same time (in parallel)

 Allows for shorter cycle times (simpler logic circuits), e.g.:
 floating point multiplication takes 5 cycles, but

 processor can work on 5 different multiplications simultaneously

 one result at each cycle after the pipeline is full

 Drawback:
 Pipeline must be filled - startup times (#Instructions >> pipeline steps)

 Efficient use of pipelines requires large number of independent instructions 
instruction level parallelism

 Requires complex instruction scheduling by compiler/hardware – software-
pipelining / out-of-order

 Pipelining is widely used in modern computer architectures

(c) RRZE 2013 Basic Architecture 14

5-stage Multiplication-Pipeline: A(i)=B(i)*C(i) ; i=1,...,N

Wind-up/-down phases: Empty pipeline stages

First result is available after 5 cycles (=latency of pipeline)!

(c) RRZE 2013 Basic Architecture 15

Pipelining: The Instruction pipeline

 Besides arithmetic & functional unit, instruction execution itself is

pipelined also, e.g.: one instruction performs at least 3 steps:

Fetch Instruction

from L1I

Decode

instruction

Execute

Instruction

Fetch Instruction 1

from L1I

Decode

Instruction 1

Execute

Instruction 1

Fetch Instruction 2

from L1I

Decode

Instruction 2

Decode

Instruction 3

Execute

Instruction 2

Fetch Instruction 3

from L1I

Fetch Instruction 4

from L1I

t

…

 Branches can stall this pipeline! (Speculative Execution, Predication)

 Each unit is pipelined itself (e.g., Execute = Multiply Pipeline)

1

2

3

4

(c) RRZE 2013 Basic Architecture 16

 Multiple units enable use of Instrucion Level Parallelism (ILP):

Instruction stream is “parallelized” on the fly

 Issuing m concurrent instructions per cycle: m-way superscalar

 Modern processors are 3- to 6-way superscalar &

can perform 2 floating point instructions per cycles

Superscalar Processors – Instruction Level Parallelism

Fetch Instruction 4

from L1I

Decode

Instruction 1

Execute

Instruction 1

Fetch Instruction 2

from L1I

Decode

Instruction 2

Decode

Instruction 3

Execute

Instruction 2

Fetch Instruction 3

from L1I

Fetch Instruction 4

from L1I

Fetch Instruction 3

from L1I

Decode

Instruction 1

Execute

Instruction 1

Fetch Instruction 2

from L1I

Decode

Instruction 2

Decode

Instruction 3

Execute

Instruction 2

Fetch Instruction 3

from L1I

Fetch Instruction 4

from L1I

Fetch Instruction 2

from L1I

Decode

Instruction 1

Execute

Instruction 1

Fetch Instruction 2

from L1I

Decode

Instruction 2

Decode

Instruction 3

Execute

Instruction 2

Fetch Instruction 3

from L1I

Fetch Instruction 4

from L1I

Fetch Instruction 1

from L1I

Decode

Instruction 1

Execute

Instruction 1

Fetch Instruction 5

from L1I

Decode

Instruction 5

Decode

Instruction 9

Execute

Instruction 5

Fetch Instruction 9

from L1I

Fetch Instruction 13

from L1I

4-way

„superscalar“

t

(c) RRZE 2013 Basic Architecture 17

Core details: Simultaneous multi-threading (SMT)

(c) RRZE 2013 Basic Architecture

St
an

d
ar

d
 c

o
re

2

-w
ay

 S
M

T

SMT principle (2-way example):

18

Core details: SIMD processing

 Single Instruction Multiple Data (SIMD) operations allow the

concurrent execution of the same operation on “wide” registers

 x86 SIMD instruction sets:

 SSE: register width = 128 Bit  2 double precision floating point operands

 AVX: register width = 256 Bit  4 double precision floating point operands

 Adding two registers holding double precision floating point

operands

(c) RRZE 2013 Basic Architecture
A

[0
]

A
[1

]
A

[2
]

A
[3

]

B
[0

]
B

[1
]

B
[2

]
B

[3
]

C
[0

]
C

[1
]

C
[2

]
C

[3
]

A
[0

]

B
[0

]

C
[0

]

64 Bit

256 Bit

+ +

+

+

+

R0 R1 R2 R0 R1 R2

Scalar execution:

R2 ADD [R0,R1]

SIMD execution:

V64ADD [R0,R1] R2

19

Registers and caches: Data transfers in a memory hierarchy

 How does data travel from memory to the CPU and back?

 Remember: Caches are organized

in cache lines (e.g., 64 bytes)

 Only complete cache lines are

transferred between memory

hierarchy levels (except registers)

 MISS: Load or store instruction does

not find the data in a cache level

 CL transfer required

 Example: Array copy A(:)=C(:)

(c) RRZE 2013 Basic Architecture

CPU registers

Cache

Memory

CL

CL CL

CL

LD C(1)

MISS

ST A(1) MISS

write
allocate

evict
(delayed)

3 CL

transfers

LD C(2..Ncl)
ST A(2..Ncl)

HIT

C(:) A(:)

20

Today: Dual-socket Intel (Westmere,…) node:

Yesterday (2006): Dual-socket Intel “Core2” node:

Uniform Memory Architecture (UMA)

Flat memory ; symmetric MPs

But: system “anisotropy”

Cache-coherent Non-Uniform Memory

Architecture (ccNUMA)

HT / QPI provide scalable bandwidth at the

price of ccNUMA architectures: Where

does my data finally end up?

On AMD it is even more complicated  ccNUMA within a socket!

From UMA to ccNUMA
Basic architecture of commodity compute cluster nodes

(c) RRZE 2013 21 Basic Architecture

There is no single driving force for chip performance!

Floating Point (FP) Performance:

P = ncore * F * S * n

ncore number of cores: 8

F FP instructions per cycle: 2

 (1 MULT and 1 ADD)

S FP ops / instruction: 4 (dp) / 8 (sp)

 (256 Bit SIMD registers – “AVX”)

n Clock speed : ∽2.7 GHz

P = 173 GF/s (dp) / 346 GF/s (sp)

(c) RRZE 2013 24 Basic Architecture

Intel Xeon

“Sandy Bridge EP” socket

4,6,8 core variants available

But: P=5.4 GF/s for serial, non-SIMD code

TOP500 rank 1 (mid-90s)

Parallelism in a modern compute node

 Parallel and shared resources within a shared-memory node

GPU #1

GPU #2
PCIe link

 Parallel resources:

 Execution/SIMD units

 Cores

 Inner cache levels

 Sockets / ccNUMA domains

 Multiple accelerators

 Shared resources:

 Outer cache level per socket

 Memory bus per socket

 Intersocket link

 PCIe bus(es)

 Other I/O resources

Other I/O

1

2

3

4 5

1

2

3

4

5

6

6

7

7

8

8

9

9

10

10

How does your application react to all of those details?

(c) RRZE 2013 Basic Architecture 32

Parallel programming models:
Pure MPI

 Machine structure is invisible to user:

  Very simple programming model

  MPI “knows what to do”!?

 Performance issues

 Intranode vs. internode MPI

 Node/system topology

(c) RRZE 2013 Basic Architecture 34

Parallel programming models:
Pure threading on the node

 Machine structure is invisible to user

  Very simple programming model

 Threading SW (OpenMP, pthreads,

TBB,…) should know about the details

 Performance issues

 Synchronization overhead

 Memory access

 Node topology

(c) RRZE 2013 Basic Architecture 35

Parallel programming models: Lots of choices
Hybrid MPI+OpenMP on a multicore multisocket cluster

One MPI process / node

One MPI process / socket:

OpenMP threads on same

socket: “blockwise”

OpenMP threads pinned

“round robin” across

cores in node

Two MPI processes / socket

OpenMP threads

on same socket

(c) RRZE 2013 36 Basic Architecture

File systems

Shared resources ⇒ your job can be affected by another
job running next to it
Different file systems on a single HPC platform

Home: back-uped, low performance
Work: back-uped or not, medium-high performance
Scratch: no back-up, high performance

ASCII vs binary output
Serial vs parallel IO
File system bandwidth reachable vs total bandwidth

16

NVLINK TO CPU

Fully connected quad

120 GB/s per GPU bidirectional for peer traffic

40 GB/s per GPU bidirectional to CPU

Direct Load/store access to CPU Memory

High Speed Copy Engines for bulk data movement

Memory hierarchy

Registers

Caches

On-chip Memory

DRAM

NVRAM
Storage

S
iz

e

B
an

dw
id

th

La
te

nc
y

new

new

Architecture comparison

Device 2x Skylake
8168

Intel KNL 7250 NVidia P100 Xilinx XCVU9P

Techno. 14nm 14nm 16nm 16nm
Freq. 2.7 GHz 1.4 GHz 1.5 GHz 0.1-0.5 GHz
Power 410W 215W 300W < 50W
#cores 48 68 3584? N.A
Cache 57 MiB 34 MiB 18 MiB 62 MiB
Fast mem N.A. 16 GB 16 GB HBM 8? GB HBM
Mem 128-512 GB 384 GB N.A. 48GB
Peak perf. (DB) 2 TF/s 2 TF/s 5.3 TF/s > 0.5TF/s

FPGA: similar performance for 10x less energy !

