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Why this course ?

Why are you sitting here ?



Purpose of this course

Why is it important to measure performance ?
⇒ During code optimization process, ”measuring is better

than guessing”, Brian Wylie, developer of Scalasca

Why is it important to have an optimized code ?
⇒ To get results faster
⇒ To ensure the best utilization of High Performance

Computing (HPC) infrastructures
⇒ To get access to HPC infrastructures



Outline

HPC architectures & performance bottlenecks
Performance evaluation concepts & methodology
Presentation of the code under study
Scalasca
Optimisation at the core level
VTune / Advisor



Debunking ideas

Lore 1
In a world of highly parallel computer architectures only highly

scalable codes will survive

Lore 2
Single core performance no longer matters since we have so

many of them and use scalable codes



Debunking ideas

!$OMP PARALLEL DO
do k = 1 , Nk

do j = 1 , Nj ; do i = 1 , Ni
y ( i , j , k )= b∗ ( x ( i −1, j , k )+ x ( i +1 , j , k )+ x ( i , j −1,k )+

x ( i , j +1 ,k )+ x ( i , j , k−1)+ x ( i , j , k +1) )
enddo ; enddo

enddo



Debunking ideas

!$OMP PARALLEL DO
do k = 1 , Nk

do j = 1 , Nj ; do i = 1 , Ni
y ( i , j , k )= b∗ ( x ( i −1, j , k )+ x ( i +1 , j , k )+ x ( i , j −1,k )+

x ( i , j +1 ,k )+ x ( i , j , k−1)+ x ( i , j , k +1) )
enddo ; enddo

enddo



Debunking ideas

!$OMP PARALLEL DO
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Debunking ideas

HPC is not only about scalability !

HPC is about running at the bottleneck of the hardware !



Bottlenecks

Hierarchical studies for hierarchical architectures
Core: Computing unit
Node: Shared memory unit
Communications: Distributed memory environment
Input/Output: File system access



Outline

Recent CPU architectures
General architecture of a cached based processor
Pipeline
Superscalar processors (ILP)
Simultaneous multi-threading (SMT)
Single Instruction Multiple Data (SIMD)
Memory hierarchy
UMA vs ccNUMA
Peak performance

Intel Xeon Phi KNL (RIP)
IBM OpenPower: IBM Power CPU + NVidia GPU
Comparison



Moore’s law and parallelism
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General-purpose cache based microprocessor core 

 (Almost) the same basic design in all modern systems 

(c) RRZE 2013 Basic Architecture 

Not shown: most of the control unit, e.g. instruction fetch/decode, branch prediction,… 
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Pipelining of arithmetic/functional units  

 Idea: 
 Split complex instruction into several simple / fast steps (stages) 

 Each step takes the same amount of time, e.g. a single cycle 

 Execute different steps on different instructions at the same time (in parallel) 

 

 Allows for shorter cycle times (simpler logic circuits), e.g.:  
 floating point multiplication takes 5 cycles, but  

 processor can work on 5 different multiplications simultaneously 

 one result at each cycle after the pipeline is full 

 

 Drawback:  
 Pipeline must be filled - startup times  (#Instructions >> pipeline steps) 

 Efficient use of pipelines requires large number of independent instructions  
instruction level parallelism 

 Requires complex instruction scheduling by compiler/hardware – software-
pipelining / out-of-order 

 

 Pipelining is widely used in modern computer architectures 

(c) RRZE 2013 Basic Architecture 14 



5-stage Multiplication-Pipeline: A(i)=B(i)*C(i) ; i=1,...,N 

Wind-up/-down phases: Empty pipeline stages 

First result is available after 5 cycles (=latency of pipeline)! 

(c) RRZE 2013 Basic Architecture 15 



Pipelining: The Instruction pipeline 

 Besides arithmetic & functional unit, instruction execution itself is 

pipelined also, e.g.: one instruction performs at least 3 steps: 
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 Branches can stall this pipeline! (Speculative Execution, Predication) 

 Each unit is pipelined itself (e.g., Execute = Multiply Pipeline) 
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 Multiple units enable use of Instrucion Level Parallelism (ILP): 

Instruction stream is “parallelized” on the fly 

 

 

 

 

 

 

 

 

 

 Issuing m concurrent instructions per cycle: m-way superscalar 

 Modern processors are 3- to 6-way superscalar &  

can perform 2 floating point instructions per cycles 

Superscalar Processors – Instruction Level Parallelism 

Fetch Instruction 4 

from L1I 

Decode  

Instruction 1 

Execute 

Instruction 1 

Fetch Instruction 2 

from L1I 

Decode  

Instruction 2 

Decode  

Instruction 3 

Execute 

Instruction 2 

Fetch Instruction 3 

from L1I 

Fetch Instruction 4 

from L1I 

Fetch Instruction 3 

from L1I 

Decode  

Instruction 1 

Execute 

Instruction 1 

Fetch Instruction 2 

from L1I 

Decode  

Instruction 2 

Decode  

Instruction 3 

Execute 

Instruction 2 

Fetch Instruction 3 

from L1I 

Fetch Instruction 4 

from L1I 

Fetch Instruction 2 

from L1I 

Decode  

Instruction 1 

Execute 

Instruction 1 

Fetch Instruction 2 

from L1I 

Decode  

Instruction 2 

Decode  

Instruction 3 

Execute 

Instruction 2 

Fetch Instruction 3 

from L1I 

Fetch Instruction 4 

from L1I 

Fetch Instruction 1 

from L1I 

Decode  

Instruction 1 

Execute 

Instruction 1 

Fetch Instruction 5 

from L1I 

Decode  

Instruction 5 

Decode  

Instruction 9 

Execute 

Instruction 5 

Fetch Instruction 9 

from L1I 

Fetch Instruction 13 

from L1I 

4-way 

„superscalar“ 

t 

(c) RRZE 2013 Basic Architecture 17 



Core details: Simultaneous multi-threading (SMT) 

(c) RRZE 2013 Basic Architecture 
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SMT principle (2-way example): 
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Core details: SIMD processing 

 Single Instruction Multiple Data (SIMD) operations allow the 

concurrent execution of the same operation on “wide” registers  

 x86 SIMD instruction sets: 

 SSE: register width = 128 Bit  2 double precision floating point operands  

 AVX: register width = 256 Bit  4 double precision floating point operands 

 Adding two registers holding double precision floating point 

operands  

 

(c) RRZE 2013 Basic Architecture 
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Scalar execution: 

R2 ADD [R0,R1] 

SIMD execution: 

V64ADD [R0,R1] R2 

19 



Registers and caches: Data transfers in a memory hierarchy 

 How does data travel from memory to the CPU and back? 

 

 Remember: Caches are organized 

in cache lines (e.g., 64 bytes) 

 Only complete cache lines are 

transferred between memory 

hierarchy levels (except registers) 

 MISS: Load or store instruction does 

not find the data in a cache level 

 CL transfer required 

 

 

 Example: Array copy A(:)=C(:) 

 

 

(c) RRZE 2013 Basic Architecture 

CPU registers 
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CL CL 
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C(:) A(:) 
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Today: Dual-socket Intel (Westmere,…) node: 

Yesterday (2006): Dual-socket Intel “Core2” node: 
 

Uniform Memory Architecture (UMA) 

Flat memory ; symmetric MPs 

But: system “anisotropy” 

 

 

 
Cache-coherent Non-Uniform Memory 

Architecture (ccNUMA) 

HT / QPI provide scalable bandwidth at the 

price of ccNUMA architectures: Where 

does my data finally end up? 

On AMD it is even more complicated  ccNUMA within a socket! 

From UMA to ccNUMA  
Basic architecture of commodity compute cluster nodes 

 

(c) RRZE 2013 21 Basic Architecture 



There is no single driving force for chip performance! 

Floating Point (FP) Performance: 

P = ncore * F * S * n 
 

ncore number of cores:  8 
 

F  FP instructions per cycle:  2  

 (1 MULT and 1 ADD) 
 

S  FP ops / instruction:   4 (dp) / 8 (sp)  

 (256 Bit SIMD registers – “AVX”) 
 

n   Clock speed :           ∽2.7 GHz 

 

 

P = 173 GF/s (dp) / 346 GF/s (sp) 

 

(c) RRZE 2013 24 Basic Architecture 

Intel Xeon 

“Sandy Bridge EP” socket  

4,6,8 core variants available 

But: P=5.4 GF/s for serial, non-SIMD code  

TOP500 rank 1 (mid-90s) 



Parallelism in a modern compute node 

 Parallel and shared resources within a shared-memory node 

GPU #1 

GPU #2 
PCIe link 

    Parallel resources: 

 Execution/SIMD units 

 Cores 

 Inner cache levels 

 Sockets / ccNUMA domains 

 Multiple accelerators 

    Shared resources: 

 Outer cache level per socket 

 Memory bus per socket 

 Intersocket link 

 PCIe bus(es) 

 Other I/O resources 

Other I/O 
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How does your application react to all of those details? 

(c) RRZE 2013 Basic Architecture 32 



Parallel programming models: 
Pure MPI 

 Machine structure is invisible to user: 

  Very simple programming model 

  MPI “knows what to do”!? 

 Performance issues 

 Intranode vs. internode MPI 

 Node/system topology 

(c) RRZE 2013 Basic Architecture 34 



Parallel programming models: 
Pure threading on the node 

 Machine structure is invisible to user 

  Very simple programming model 

 Threading SW (OpenMP, pthreads, 

TBB,…) should know about the details 

 Performance issues 

 Synchronization overhead 

 Memory access 

 Node topology 

(c) RRZE 2013 Basic Architecture 35 



Parallel programming models: Lots of choices 
Hybrid MPI+OpenMP on a multicore multisocket cluster 

 

One MPI process / node 

 

 

One MPI process / socket: 

OpenMP threads on same 

socket: “blockwise” 

 

OpenMP threads pinned 

“round robin” across 

cores in node 

 

Two MPI processes / socket 

OpenMP threads  

on same socket 

 

(c) RRZE 2013 36 Basic Architecture 



File systems

Shared resources ⇒ your job can be affected by another
job running next to it
Different file systems on a single HPC platform

Home: back-uped, low performance
Work: back-uped or not, medium-high performance
Scratch: no back-up, high performance

ASCII vs binary output
Serial vs parallel IO
File system bandwidth reachable vs total bandwidth
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NVLINK TO CPU 

 

Fully connected quad 

120 GB/s per GPU bidirectional for peer traffic 

40 GB/s per GPU bidirectional to CPU 

Direct Load/store access to CPU Memory 

High Speed Copy Engines for bulk data movement 

 



Memory hierarchy

Registers

Caches

On-chip Memory

DRAM

NVRAM
Storage
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Architecture comparison

Device 2x Skylake
8168

Intel KNL 7250 NVidia P100 Xilinx XCVU9P

Techno. 14nm 14nm 16nm 16nm
Freq. 2.7 GHz 1.4 GHz 1.5 GHz 0.1-0.5 GHz
Power 410W 215W 300W < 50W
#cores 48 68 3584? N.A
Cache 57 MiB 34 MiB 18 MiB 62 MiB
Fast mem N.A. 16 GB 16 GB HBM 8? GB HBM
Mem 128-512 GB 384 GB N.A. 48GB
Peak perf. (DB) 2 TF/s 2 TF/s 5.3 TF/s > 0.5TF/s

FPGA: similar performance for 10x less energy !


