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Why this course ?

Why are you sitting here ?



Purpose of this course

Why is it important to measure performance ?
⇒ During code optimization process, ”measuring is better

than guessing”, Brian Wylie, developer of Scalasca

Why is it important to have an optimized code ?
⇒ To get results faster
⇒ To ensure the best utilization of High Performance

Computing (HPC) infrastructures
⇒ To get access to HPC infrastructures



Outline

HPC architectures & performance bottlenecks
Performance evaluation concepts & methodology
Presentation of the code under study
Scalasca
Optimisation at the core level
VTune / Advisor



Debunking ideas

Lore 1
In a world of highly parallel computer architectures only highly

scalable codes will survive

Lore 2
Single core performance no longer matters since we have so

many of them and use scalable codes



Debunking ideas

!$OMP PARALLEL DO
do k = 1 , Nk

do j = 1 , Nj ; do i = 1 , Ni
y ( i , j , k )= b∗ ( x ( i −1, j , k )+ x ( i +1 , j , k )+ x ( i , j −1,k )+

x ( i , j +1 ,k )+ x ( i , j , k−1)+ x ( i , j , k +1) )
enddo ; enddo

enddo
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Debunking ideas

HPC is not only about scalability !

HPC is about running at the bottleneck of the hardware !



Bottlenecks

Hierarchical studies for hierarchical architectures
Core: Computing unit
Node: Shared memory unit
Communications: Distributed memory environment
Input/Output: File system access



Outline

Recent CPU architectures
General architecture of a cached based processor
Pipeline
Superscalar processors (ILP)
Simultaneous multi-threading (SMT)
Single Instruction Multiple Data (SIMD)
Memory hierarchy
UMA vs ccNUMA
Peak performance

Intel Xeon Phi KNL (RIP)
IBM OpenPower: IBM Power CPU + NVidia GPU
Comparison



Moore’s law and parallelism
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General-purpose cache based microprocessor core 

 (Almost) the same basic design in all modern systems 

(c) RRZE 2013 Basic Architecture 

Not shown: most of the control unit, e.g. instruction fetch/decode, branch prediction,… 
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Pipelining of arithmetic/functional units  

 Idea: 
 Split complex instruction into several simple / fast steps (stages) 

 Each step takes the same amount of time, e.g. a single cycle 

 Execute different steps on different instructions at the same time (in parallel) 

 

 Allows for shorter cycle times (simpler logic circuits), e.g.:  
 floating point multiplication takes 5 cycles, but  

 processor can work on 5 different multiplications simultaneously 

 one result at each cycle after the pipeline is full 

 

 Drawback:  
 Pipeline must be filled - startup times  (#Instructions >> pipeline steps) 

 Efficient use of pipelines requires large number of independent instructions  
instruction level parallelism 

 Requires complex instruction scheduling by compiler/hardware – software-
pipelining / out-of-order 

 

 Pipelining is widely used in modern computer architectures 

(c) RRZE 2013 Basic Architecture 14 



5-stage Multiplication-Pipeline: A(i)=B(i)*C(i) ; i=1,...,N 

Wind-up/-down phases: Empty pipeline stages 

First result is available after 5 cycles (=latency of pipeline)! 

(c) RRZE 2013 Basic Architecture 15 



Pipelining: The Instruction pipeline 

 Besides arithmetic & functional unit, instruction execution itself is 

pipelined also, e.g.: one instruction performs at least 3 steps: 
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 Branches can stall this pipeline! (Speculative Execution, Predication) 

 Each unit is pipelined itself (e.g., Execute = Multiply Pipeline) 
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 Multiple units enable use of Instrucion Level Parallelism (ILP): 

Instruction stream is “parallelized” on the fly 

 

 

 

 

 

 

 

 

 

 Issuing m concurrent instructions per cycle: m-way superscalar 

 Modern processors are 3- to 6-way superscalar &  

can perform 2 floating point instructions per cycles 

Superscalar Processors – Instruction Level Parallelism 
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Core details: Simultaneous multi-threading (SMT) 

(c) RRZE 2013 Basic Architecture 
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SMT principle (2-way example): 
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Core details: SIMD processing 

 Single Instruction Multiple Data (SIMD) operations allow the 

concurrent execution of the same operation on “wide” registers  

 x86 SIMD instruction sets: 

 SSE: register width = 128 Bit  2 double precision floating point operands  

 AVX: register width = 256 Bit  4 double precision floating point operands 

 Adding two registers holding double precision floating point 

operands  

 

(c) RRZE 2013 Basic Architecture 
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Scalar execution: 

R2 ADD [R0,R1] 

SIMD execution: 

V64ADD [R0,R1] R2 
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Registers and caches: Data transfers in a memory hierarchy 

 How does data travel from memory to the CPU and back? 

 

 Remember: Caches are organized 

in cache lines (e.g., 64 bytes) 

 Only complete cache lines are 

transferred between memory 

hierarchy levels (except registers) 

 MISS: Load or store instruction does 

not find the data in a cache level 

 CL transfer required 

 

 

 Example: Array copy A(:)=C(:) 

 

 

(c) RRZE 2013 Basic Architecture 

CPU registers 
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CL 

CL CL 

CL 

LD C(1) 

MISS 

ST A(1) MISS 

write 
allocate 
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3 CL 

transfers 

LD C(2..Ncl) 
ST A(2..Ncl) 

 

HIT 

C(:) A(:) 
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Today: Dual-socket Intel (Westmere,…) node: 

Yesterday (2006): Dual-socket Intel “Core2” node: 
 

Uniform Memory Architecture (UMA) 

Flat memory ; symmetric MPs 

But: system “anisotropy” 

 

 

 
Cache-coherent Non-Uniform Memory 

Architecture (ccNUMA) 

HT / QPI provide scalable bandwidth at the 

price of ccNUMA architectures: Where 

does my data finally end up? 

On AMD it is even more complicated  ccNUMA within a socket! 

From UMA to ccNUMA  
Basic architecture of commodity compute cluster nodes 

 

(c) RRZE 2013 21 Basic Architecture 



There is no single driving force for chip performance! 

Floating Point (FP) Performance: 

P = ncore * F * S * n 
 

ncore number of cores:  8 
 

F  FP instructions per cycle:  2  

 (1 MULT and 1 ADD) 
 

S  FP ops / instruction:   4 (dp) / 8 (sp)  

 (256 Bit SIMD registers – “AVX”) 
 

n   Clock speed :           ∽2.7 GHz 

 

 

P = 173 GF/s (dp) / 346 GF/s (sp) 

 

(c) RRZE 2013 24 Basic Architecture 

Intel Xeon 

“Sandy Bridge EP” socket  

4,6,8 core variants available 

But: P=5.4 GF/s for serial, non-SIMD code  

TOP500 rank 1 (mid-90s) 



Parallelism in a modern compute node 

 Parallel and shared resources within a shared-memory node 

GPU #1 

GPU #2 
PCIe link 

    Parallel resources: 

 Execution/SIMD units 

 Cores 

 Inner cache levels 

 Sockets / ccNUMA domains 

 Multiple accelerators 

    Shared resources: 

 Outer cache level per socket 

 Memory bus per socket 

 Intersocket link 

 PCIe bus(es) 

 Other I/O resources 

Other I/O 
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How does your application react to all of those details? 

(c) RRZE 2013 Basic Architecture 32 



Parallel programming models: 
Pure MPI 

 Machine structure is invisible to user: 

  Very simple programming model 

  MPI “knows what to do”!? 

 Performance issues 

 Intranode vs. internode MPI 

 Node/system topology 

(c) RRZE 2013 Basic Architecture 34 



Parallel programming models: 
Pure threading on the node 

 Machine structure is invisible to user 

  Very simple programming model 

 Threading SW (OpenMP, pthreads, 

TBB,…) should know about the details 

 Performance issues 

 Synchronization overhead 

 Memory access 

 Node topology 

(c) RRZE 2013 Basic Architecture 35 



Parallel programming models: Lots of choices 
Hybrid MPI+OpenMP on a multicore multisocket cluster 

 

One MPI process / node 

 

 

One MPI process / socket: 

OpenMP threads on same 

socket: “blockwise” 

 

OpenMP threads pinned 

“round robin” across 

cores in node 

 

Two MPI processes / socket 

OpenMP threads  

on same socket 

 

(c) RRZE 2013 36 Basic Architecture 



File systems

Shared resources ⇒ your job can be affected by another
job running next to it
Different file systems on a single HPC platform

Home: back-uped, low performance
Work: back-uped or not, medium-high performance
Scratch: no back-up, high performance

ASCII vs binary output
Serial vs parallel IO
File system bandwidth reachable vs total bandwidth





16  

NVLINK TO CPU 

 

Fully connected quad 

120 GB/s per GPU bidirectional for peer traffic 

40 GB/s per GPU bidirectional to CPU 

Direct Load/store access to CPU Memory 

High Speed Copy Engines for bulk data movement 

 



Memory hierarchy

Registers

Caches

On-chip Memory

DRAM

NVRAM
Storage
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Architecture comparison

Device 2x Skylake
8168

Intel KNL 7250 NVidia P100 Xilinx XCVU9P

Techno. 14nm 14nm 16nm 16nm
Freq. 2.7 GHz 1.4 GHz 1.5 GHz 0.1-0.5 GHz
Power 410W 215W 300W < 50W
#cores 48 68 3584? N.A
Cache 57 MiB 34 MiB 18 MiB 62 MiB
Fast mem N.A. 16 GB 16 GB HBM 8? GB HBM
Mem 128-512 GB 384 GB N.A. 48GB
Peak perf. (DB) 2 TF/s 2 TF/s 5.3 TF/s > 0.5TF/s

FPGA: similar performance for 10x less energy !


