Relativistic effects in macroscopically delocalized quantum superpositions

Albert Roura

based on arXiv:1810.06744

Paris, 28 June 2019

Relativistic effects in macroscopically delocalized quantum superpositions

- Differences in *dynamics* of superposition components

 entirely Newtonian
- Same relativistic effects on superposition components STANFOR(E.g. atomic clocks)
- ★ <u>Goal</u> (QM + GR): experiment with general relativistic effects acting *non-trivially* on the quantum superposition

Proper time as which-way information

 Quantum superposition of clocks (COM + internal state) experiencing different proper times

Zych et al., Nat. Comm. (2011)

Proper time as which-way information

 Quantum superposition of clocks (COM + internal state) experiencing different proper times

Zych et al., Nat. Comm. (2011)

Outline

- I. Relativistic effects in macroscopically delocalized quantum superpositions
- 2. Key elements of quantum-clock interferometry
- 3. Major challenges in quantum-clock interferometry
- 4. Doubly differential scheme for gravitational-redshift measurements
- 5. Feasibility and extensions

Key elements of quantum-clock interferometry

Quantum-clock model

• Initialization pulse:

$$|\mathbf{g}\rangle \rightarrow |\Phi(0)\rangle = \frac{1}{\sqrt{2}} (|\mathbf{g}\rangle + i e^{i\varphi} |\mathbf{e}\rangle)$$

• Evolution:

$$\left| \Phi(\tau) \right\rangle \propto \frac{1}{\sqrt{2}} \Big(|\mathbf{g}\rangle + i \, e^{i\varphi} e^{-i\Delta E \, \tau/\hbar} |\mathbf{e}\rangle \Big)$$

• Quantum overlap: $\left| \langle \Phi(\tau_b) | \Phi(\tau_a) \rangle \right| = \cos\left(\frac{\Delta E}{2\hbar} \left(\tau_b - \tau_a \right) \right)$

• Comparison of independent clocks (after read-out pulse):

$$\Delta \tau_b - \Delta \tau_a \approx \left(g L_z/c^2\right) \Delta t$$

for optical atomic clocks $\Delta E \sim 1 \, {\rm eV}$ $L_z \sim 1 \, {\rm cm}$

• Instead of independent clocks we pursue a quantum superposition at different heights.

• Comparison of independent clocks (after read-out pulse):

Instead of independent clocks we pursue a quantum superposition at different heights.

- Theoretical description of the clock
 - two-level atom (internal state):

$$\hat{H} = \hat{H}_1 \otimes |\mathbf{g}\rangle \langle \mathbf{g}| + \hat{H}_2 \otimes |\mathbf{e}\rangle \langle \mathbf{e}|$$

 $m_1 = m_g$ $m_2 = m_g + \Delta m$ $\Delta m = \Delta E/c^2$

classical action for COM motion:

$$S_n[x^{\mu}(\lambda)] = -m_n c^2 \int d\tau = -m_n c \int d\lambda \sqrt{-g_{\mu\nu}} \frac{dx^{\mu}}{d\lambda} \frac{dx^{\nu}}{d\lambda} \qquad (n = 1, 2)$$

free fall
$$S_n[x^{\mu}(\lambda)] = -m_n c^2 \int d\tau - \int d\tau V_n(x^{\mu}) \qquad \text{including}$$

external forces

Atom interferometry in curved spacetime (including relativistic effects)

- Wave-packet evolution in terms of
 - central trajectory (satisfies classical e.o.m.) $X^{\mu}(\lambda)$
 - centered wave packet $\left|\psi_{\rm c}^{(n)}(\tau_{\rm c})\right\rangle$
- Fermi-Walker frame associated with the central trajectory
 - valid for freely falling wave packet (geodesic)
 - but also with external forces / guiding potential (accel. trajectory)
 - approximately *non-relativistic* dynamics for centered wave packet

• Metric in *Fermi-Walker* coordinates: $X^{\mu}(\tau_{c}) = (c \tau_{c}, \mathbf{0})$

$$ds^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu} = g_{00}c^{2}d\tau_{c}^{2} + 2g_{0i}c\,d\tau_{c}\,dx^{i} + g_{ij}\,dx^{i}dx^{j}$$

$$g_{00} = -(1 + \delta_{ij} a^{i}(\tau_{c}) x^{j}/c^{2})^{2} - R_{0i0j}(\tau_{c}, \mathbf{0}) x^{i}x^{j} + O(|\mathbf{x}|^{3})$$

$$g_{0i} = -\frac{2}{3}R_{0jik}(\tau_{c}, \mathbf{0}) x^{j}x^{k} + O(|\mathbf{x}|^{3})$$

$$g_{ij} = \delta_{ij} - \frac{1}{3}R_{ikjl}(\tau_{c}, \mathbf{0}) x^{k}x^{l} + O(|\mathbf{x}|^{3})$$

• Expanding the action for the centered wave packet:

$$S_n[\mathbf{x}(t)] \approx \int d\tau_{\rm c} \left[-m_n c^2 - V_n(\tau_{\rm c}, \mathbf{0}) + \frac{m_n}{2} \mathbf{v}^2 - \frac{1}{2} \mathbf{x}^{\rm T} \left(\mathcal{V}^{(n)}(\tau_{\rm c}) - m_n \Gamma(\tau_{\rm c}) \right) \mathbf{x} - V_{\rm anh.}^{(n)}(\tau_{\rm c}, \mathbf{x}) \right]$$

• Hamiltonian: $\hat{H}_n = m_n c^2 + V_n(\tau_c, \mathbf{0}) + \hat{H}_c^{(n)}$

$$\hat{H}_{c}^{(n)} = \frac{1}{2m_{n}} \,\hat{\mathbf{p}}^{2} + \frac{1}{2} \,\hat{\mathbf{x}}^{T} \left(\mathcal{V}^{(n)}(\tau_{c}) - m_{n} \Gamma(\tau_{c}) \right) \hat{\mathbf{x}} \qquad \qquad \mathcal{V}_{ij}^{(n)}(\tau_{c}) = \left. \partial_{i} \partial_{j} V_{n}(\tau_{c}, \mathbf{x}) \right|_{\mathbf{x}=\mathbf{0}}$$

- Wave-packet evolution: $|\psi^{(n)}(\tau_{c})\rangle = e^{iS_{n}/\hbar} |\psi^{(n)}_{c}(\tau_{c})\rangle$
 - propagation phase

$$\mathcal{S}_n = -\int_{\tau_1}^{\tau_2} d\tau_{\rm c} \left(m_n c^2 + V_n(\tau_{\rm c}, \mathbf{0}) \right)$$

centered wave packet

$$i\hbar \frac{d}{d\tau_{\rm c}} \left| \psi_{\rm c}^{(n)}(\tau_{\rm c}) \right\rangle = \hat{H}_{\rm c} \left| \psi_{\rm c}^{(n)}(\tau_{\rm c}) \right\rangle$$

• Full interferometer (including laser kicks):

- Detection probability at the exit port(s): $\langle \psi_{\rm I} | \psi_{\rm I} \rangle = \frac{1}{2} (1 + \cos \delta \phi)$
- Phase shift: $\delta \phi = \phi_b \phi_a + \delta \phi_{sep}$

Major challenges in quantum-clock interferometry

Insensitivity to gravitational redshift (in a uniform field)

• Consider a freely falling frame:

• Proper-time difference between the two interferometer branches \longrightarrow independent of g

(small dependence due to pulse timing suppressed by $(v_{\rm rec}/c) \sim 10^{-10}$)

Insensitivity to gravitational redshift (in a uniform field)

• Consider a freely falling frame:

• Proper-time difference between the two interferometer branches \longrightarrow independent of g

(small dependence due to pulse timing suppressed by $(v_{\rm rec}/c) \sim 10^{-10}$)

Differential recoil

• Different recoil velocities \rightarrow different central trajectories

 Implied changes of proper-time difference are comparable to signal of interest.

Small visibility changes

 Reduced interference visibility due to deceasing quantum overlap of clock states:

$$\left\langle \Psi_{\mathrm{I}} | \Psi_{\mathrm{I}} \right\rangle = \frac{1}{2} + \frac{1}{2} \left| \left\langle \Phi(\tau_{b}) | \Phi(\tau_{a}) \right\rangle \right| \cos \delta \phi \qquad \left| \left\langle \Phi(\tau_{b}) | \Phi(\tau_{a}) \right\rangle \right| = \cos \left(\frac{\Delta E}{2\hbar} \left(\tau_{b} - \tau_{a} \right) \right)$$

Small effect for feasible parameter range:

 $\left| \langle \Phi(\tau_b) | \Phi(\tau_a) \rangle \right| = \cos \left(\frac{\omega_0}{2} \frac{g \, \Delta z}{c^2} \, \Delta t \right) \approx 1 - \left(10^{-3} \right)^2 / 2 \qquad \qquad \Delta E / \hbar = \omega_0 \approx 2\pi \times 4 \times 10^2 \, \text{THz}$ $\Delta z = 1 \, \text{cm}$ $\Delta t = 1 \, \text{s}$

• Extremely difficult to measure such small changes of visibility, which are masked by other effects leading also to loss of visibility.

Small visibility changes

 Reduced interference visibility due to deceasing quantum overlap of clock states:

$$\left\langle \Psi_{\mathrm{I}} | \Psi_{\mathrm{I}} \right\rangle = \frac{1}{2} + \frac{1}{2} \left| \left\langle \Phi(\tau_{b}) | \Phi(\tau_{a}) \right\rangle \right| \cos \delta \phi \qquad \left| \left\langle \Phi(\tau_{b}) | \Phi(\tau_{a}) \right\rangle \right| = \cos \left(\frac{\Delta E}{2\hbar} \left(\tau_{b} - \tau_{a} \right) \right)$$

Small effect for feasible parameter range:

 $\left| \langle \Phi(\tau_b) | \Phi(\tau_a) \rangle \right| = \cos \left(\frac{\omega_0}{2} \frac{g \, \Delta z}{c^2} \, \Delta t \right) \approx 1 - \left(10^{-1} \right)^2 / 2 \qquad \qquad \Delta E / \hbar = \omega_0 \approx 2\pi \times 4 \times 10^2 \, \text{THz}$ $\Delta z = 1 \, \text{m}$ $\Delta t = 1 \, \text{s}$

 Extremely difficult to measure such small changes of visibility, which are masked by other effects leading also to loss of visibility.

Doubly differential scheme for gravitational-redshift measurement

Differential phase-shift measurement

Detection probability at first exit port (independent of internal state):

- Phase-shift difference directly related to visibility reduction.
- Precise differential phase-shift measurement involving state-selective detection is much more viable.

(*immune* to spurious loss of contrast + common-mode rejection of phase noise)

Two-photon pulse for clock initialization

• Level structure for group-II-type atoms (e.g. Sr, Yb) employed in optical atomic clocks:

- Two-photon process resonantly connecting the two clock states.
- Equal-frequency counter-propagating laser beams in lab frame:
 constant effective phase -> simultaneity hypersurfaces in lab frame

 $e^{i\omega t}e^{i\mathbf{k}\cdot\mathbf{x}} \times e^{i\omega t}e^{-i\mathbf{k}\cdot\mathbf{x}} = e^{i\,2\omega t}$

Laboratory frame

• Compare differential phase-shift measurements for different initialization times:

$$\left(\delta\phi^{(2)}(t_{i}') - \delta\phi^{(1)}(t_{i}')\right) - \left(\delta\phi^{(2)}(t_{i}) - \delta\phi^{(1)}(t_{i})\right) = \frac{\Delta E}{2\hbar} \left(\Delta\tau_{b} - \Delta\tau_{a}\right) = \Delta m g \,\Delta z \,(t_{i}' - t_{i})/\hbar$$

Laboratory frame

• Compare differential phase-shift measurements for different initialization times:

$$\left(\delta\phi^{(2)}(t_{i}') - \delta\phi^{(1)}(t_{i}')\right) - \left(\delta\phi^{(2)}(t_{i}) - \delta\phi^{(1)}(t_{i})\right) = \frac{\Delta E}{2\hbar} \left(\Delta\tau_{b} - \Delta\tau_{a}\right) = \Delta m g \,\Delta z \,(t_{i}' - t_{i})/\hbar$$

Laboratory frame

• Compare differential phase-shift measurements for different initialization times:

$$\left(\delta\phi^{(2)}(t_{i}') - \delta\phi^{(1)}(t_{i}')\right) - \left(\delta\phi^{(2)}(t_{i}) - \delta\phi^{(1)}(t_{i})\right) = \frac{\Delta E}{2\hbar} \left(\Delta\tau_{b} - \Delta\tau_{a}\right) = \Delta m g \,\Delta z \,(t_{i}' - t_{i})/\hbar$$

Freely falling frame

• Relativity of simultaneity: $\Delta \tau_{\rm c} \approx -v(t) \Delta z/c^2 = g (t - t_{\rm ap}) \Delta z/c^2$

 $\left(\delta\phi^{(2)}(t_{\rm i}') - \delta\phi^{(1)}(t_{\rm i}')\right) - \left(\delta\phi^{(2)}(t_{\rm i}) - \delta\phi^{(1)}(t_{\rm i})\right) = \frac{\Delta E}{2\hbar} \left(\Delta\tau_b - \Delta\tau_a\right) = \Delta m \, g \, \Delta z \, (t_{\rm i}' - t_{\rm i})/\hbar$

Challenges addressed

- Comparing measurements with different initialization times
 sensitive to gravitational redshift + further immunity
- Almost no recoil from *initialization pulse*, small residual recoil with no impact on gravitational redshift measurement,

effect of differential recoil from second pair of Bragg pulses cancels out in doubly differential measurement. • Residual recoil with no influence on the phase-shift for the excited state:

Feasibility and extensions

Feasible implementation

HITec (Hannover)

- 10-m atomic fountains operating with Sr, Yb in Stanford & Hannover respectively.
- More than 2 s of free evolution time.
- Doubly differential phase shift of $1 \mod 1$

 $\Delta E/\hbar = \omega_0 \approx 2\pi \times 4 \times 10^2 \,\mathrm{THz}$

 $\Delta z = 1 \,\mathrm{cm}$

 $\Delta t_{\rm i} = 1\,{\rm s}$

- Resolvable in a single shot for atomic clouds with $N = 10^6$ atoms (shot-noise limited)
- More compact set-ups possible with guided or hybrid interferometry (less mature).

Conclusion

• Measurement of relativistic effects in macroscopically delocalized quantum superpositions with quantum-clock interferometry.

- Important *challenges* in quantum-clock interferometry and its application to gravitational-redshift measurement.
- Promising <u>doubly differential scheme</u> that overcomes them.
- Feasible implementation in facilities soon to become operational.

Applicable also to more compact set-ups based on guided or hybrid interferometry.

• If one considers a consistent framework for parameterizing violations of Einstein's equivalence principle, (e.g. dilaton models)

both for comparison of *independent clocks* and for the above *quantum-clock interferometry* scheme one obtains

$$\frac{\Delta \bar{\tau}_b - \Delta \bar{\tau}_a}{\Delta \bar{\tau}_a} \approx (1 + \alpha_{\text{e-g}}) \Big(U(\mathbf{x}_b) - U(\mathbf{x}_a) \Big) / c^2 \qquad \alpha_{\text{e-g}} = \frac{m_1}{\Delta m} \big(\beta_2 - \beta_1 \big)$$

test of universality of gravitational redshift with delocalized quantum superpositions

Related work

• Collaboration on the experimental realization of the proposed scheme with *Leibniz University Hannover*:

Sina Loriani Dennis Schlippert Ernst Rasel

• Related theoretical work at Ulm University:

PHYSICAL REVIEW A **99**, 013627 (2019)

Proper time in atom interferometers: Diffractive versus specular mirrors

Enno Giese,^{1,*} Alexander Friedrich,¹ Fabio Di Pumpo,¹ Albert Roura,¹ Wolfgang P. Schleich,^{1,2} Daniel M. Greenberger,³ and Ernst M. Rasel⁴ • Discussion of special relativistic effects:

Interference of Clocks: A Quantum Twin Paradox

Sina Loriani^{1†}, Alexander Friedrich^{2†*}, Christian Ufrecht², Fabio Di Pumpo², Stephan Kleinert², Sven Abend¹, Naceur Gaaloul¹, Christian Meiners¹, Christian Schubert¹, Dorothee Tell¹, Étienne Wodey¹, Magdalena Zych³, Wolfgang Ertmer¹, Albert Roura², Dennis Schlippert¹, Wolfgang P. Schleich^{2,4}, Ernst M. Rasel¹ and Enno Giese²

arXiv:1905.09102

QUANTUS group @ Ulm University

Wolfgang Schleich

Albert Roura

Wolfgang Zeller

Matthias Meister

Enno Giese

Christian Ufrecht

Stephan Kleinert

Jens Jenewein

Sabrina Hartmann Alexander Friedrich Fabio Di Pumpo

Eric Glasbrenner

Thank you for your attention.

Gefördert durch:

Bundesministerium für Wirtschaft und Energie

Q-SENSE European Union H2020 RISE Project

aufgrund eines Beschlusses des Deutschen Bundestages