Characterizing Earth gravity field fluctuations with MIGA

Joseph Junca

June 25, 2019

Joseph Junca Characterizing Earth gravity field fluctuations with MIGA

- What is GGN ?
- Modelization of GGN
- GGN characterization with MIGA ?

What is GGN ?

test masses \Downarrow

- $\rightarrow\,$ movement of the ground
- $\rightarrow\,$ density variations within the atmosphere

Possible sources:

- $\rightarrow\,$ movement of the ground
- ightarrow density variations within the atmosphere
- $\rightarrow\,$ movement of a mass nearby the detector

Possible sources:

- $\rightarrow\,$ movement of the ground
- $\rightarrow\,$ density variations within the atmosphere
- \rightarrow movement of a mass nearby the detector

seismic activity ${\color{black} \Downarrow}$

What amplitude is to be expected?

Hypothesis of the theoretical calculus:

- \rightarrow Rayleigh waves
- $\rightarrow\,$ isotropic seismic activity
- \rightarrow homogeneous medium

Results:

$$S_{\Delta a_x}(\omega, L) = H_R^2(\omega, L) S_{\xi_z}(\omega)$$
(1)

Characterizing Earth gravity field fluctuations with MIGA

Characterizing Earth gravity field fluctuations with MIGA

soundwaves in the atmosphere $$\Downarrow$

soundwaves in the atmosphere $$\Downarrow$$ density variation within the atmosphere $$\Downarrow$$

soundwaves in the atmosphere $\begin{tabular}{l} ψ \\ $\texttt{density variation within the atmosphere}$ \\ ψ \\ \texttt{GGN} \\ \end{tabular}$

soundwaves in the atmosphere $$\psi$$ density variation within the atmosphere $$\varphi^{\Downarrow}_{N}$$

What amplitude is to be expected?

Hypothesis of the theoretical calculus:

- \rightarrow adiabatic compressional plane waves
- $\rightarrow\,$ isotropic direction of propagation
- $\rightarrow\,$ total reflection onto the surface of the ground
- ightarrow homogeneous atmosphere

Results:

$$S_{\Delta a_{x}}(\omega, L) = H_{I}^{2}(\omega, L)S_{\delta P}(\omega)$$
⁽²⁾

(2)

Joseph Junca

Characterizing Earth gravity field fluctuations with MIGA

Joseph Junca

2 atom interferometers simultaneously interrogated along a common laser beam.

MIGA sensitivity to differential acceleration.

Differential interferometric phase:

$$\psi(X_1, X_2, t) = \int_{-\infty}^{+\infty} g'(\tau - t) (\Delta \varphi_{las}(X_1, \tau) - \Delta \varphi_{las}(X_2, \tau)) d\tau$$
(3)

Indirect detection scheme based on the measure of the Allan variation

$$\sigma_{\psi}(mT_c) = \int_0^{+\infty} H_m^2(\omega) S_{\Delta a_x}(\omega) \frac{d\omega}{2\pi} \qquad H_m(\omega) = \frac{2\sqrt{2nk_L}}{m} \frac{\sin^2(m\omega T_c/2)}{|\sin(\omega T_c/2)|} \frac{4\sin^2(\omega T/2)}{\omega^2}$$

$$\sigma_{\psi}(mT_{c}) = \int_{0}^{+\infty} H_{m}^{2}(\omega) S_{\Delta a_{x}}(\omega) \frac{d\omega}{2\pi} \qquad H_{m}(\omega) = \frac{2\sqrt{2}nk_{L}}{m} \frac{\sin^{2}(m\omega T_{c}/2)}{|\sin(\omega T_{c}/2)|} \frac{4\sin^{2}(\omega T/2)}{\omega^{2}}$$

$$\int_{0}^{10^{0}} \frac{10^{0}}{10^{0}} \frac{10^{0}}{10^{0}$$

Conclusion

- GGN modelisation from seismic Rayleigh waves
- GGN modelisation from infrasound within the atmosphere
- comparison with MIGA target sensitivities
- scheme for indirect detection of GGN signal with MIGA

PHYSICAL REVIEW D 99, 104026 (2019)

Characterizing Earth gravity field fluctuations with the MIGA antenna for future gravitational wave detectors

J. Junca,¹ A. Bertoldi,¹ D. O. Sabulsky,¹ G. Lefèvre,¹ X. Zou,¹ J.-B. Decitre,² R. Geiger,³ A. Landragin,³ S. Gaffet,² P. Bouyer,¹ and B. Canuel¹ ¹LP2N, Laboratoire Photonique, Numérique et Nanosciences, Université Bordeaux-IOOS-CNRS:UMR 5298, rue F. Mitterrand, F-33400 Talence, France ²LSBB, Laboratoire Souterrain Bas Bruit, UNS, UNPY, CNRS:UMS 3538, AMU, La Grande Combe, F-84400 Rustrel, France ³LNE-SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, 61, avenue de l'Observatoire, F-75L01 Paris, France