

Phase A LISA detector activities @ ARTEMIS - stray light and photoreceivers -

Nicoleta Dinu-Jaeger

- LISA Project Manager @ ARTEMIS/OCA

GdR, Detectors OG, 25/06/2019

LISA Stray Light activities @ ARTEMIS

- Main contributors: M. Lintz, V. Khodnevych, D. Huet, S. di Pace, JY. Vinet

Financial support:

- R&T CNES
- PACA Region (thesis V. Khodnevych)
- OCA & UCA

3 LIG Stray light Working Group

One of the Working Groups of LISA Instrument Group (LIG)

Chairs: Gudrun Wanner (Albert Einstein Institute, Hanover), Michel Lintz (ARTEMIS/OCA, Nice)

Contributors

- Germany: Albert Einstein Institute (Hanover)
- UK: Glasgow Univ. & UK Astronomy Tehn. Center, Edinburg
- US: NASA Goddard Greenbelt, Florida Univ., Gainesville
- ESA/ESTEC, Noordwijk

French Contribution

- APC (Univ. Paris Diderot)
- ARTEMIS (Observatoire de la Côte d'Azur, CNRS et UCA Nice)
- Institute Fresnel (Marseille)
- LMA (Univ. Claude Bernard, Lyon)
- CNES (P. Etcheto, D. Faye)

Terminology / types of stray light

Stray light in LISA

- LISA interferometric schema
 - "Transponder" type

- Similar to interferometric scheme of Grace-FO
 - Received beam, Rx < 1nW vs. transmitted beam Tx ~1-2 W</p>
- LISA instrument particularity
 - The same telescope at emission and reception
 - Backscatter light by telescope is evident problem
- Heterodyne type
 - "2 photons/s" detection
- **LISA** strain sensitivity allocation: ~16.5 x 10⁻²¹ / \sqrt{Hz}
 - Single link displacement noise: ~10 pm/ \sqrt{Hz}
 - Phase measurement noise: ~ several μ rad/ \sqrt{Hz}
 - Request: Stray light measurement floor of ~ 10⁻¹² or below

Items related to LISA stray light work

- Evaluate the noise level originating from stray light
 - Coherent stray light
 - Tx => long arm IFO
 - Rx => long arm IFO
 - Parasitic reflections & transmissions
 - Incoherent stray light
 - Stars, planets => long arm IFO
 - Tx => CAS (Constellation Acquisition Sensor)
- Provide protections against stray light
 - Rejection efficiency
 - Easy integration

Prepare & perform measurements, characterization, particularly during AIVT

Guaranty a low level stray light before the launch

Experimental stray light studies @ ARTEMIS

- Set-up dedicated to the measurement of the coherent backscattered light on simple optical components presenting roughness or dust contamination
 - Michelson fiber interferometer of equal arms (laser wavelength @ 1.55 μ m)
 - Data analysis challenge
 - Need to take care of any stray light source
 - Modulation/demodulation scheme
- Obtained detection limit of coherent backscattered light down to 10⁻¹³ in optical power
- Dependence of measured backscattered on
 - Spot position on the sample under test
 - Incident angle
 - Polarization

Speckle property of the backscattered light

Backscattered signal

- Random vs position ("speckle" shape), but perfectly reproducible if the incident angle is constant
- Main speckle characteristics
 - Reveals the random character of the mirror roughness (roughness of mirror under test: 150Å RMS)
 - Speckle grain ~ beam size

Speckle properties : angular scans

Very fast dependence on incident angle

The amplitude is decreasing with increasing incidence angle

10 Coherent backscattered light in crossed polarization

The backscattered in cross polarization is not completely rejected

10 times less (for a metallic mirror)

Conclusions on stray light activities @ ARTEMIS and immediate perspectives

- Metrology of backscattered light using Mickelson interferometer @ 1,55 μm
- Speckle properties, particularly angular
 - Reasonable orders of magnitude
- The cross-polarization is not negligible (on a metallic mirror)
- Diffusion on contamination
 - Witness exposed in an AIVT background (LAM/NISP AIVT clean room)

Duplicate @ 1,06 μm (RIO diode)

To be performed on "true" LISA mirrors

idem

Read the exposed witness

LISA Photoreceivers activities @ ARTEMIS

Aim of the Photoreceivers activities in France (ARTEMIS & CPPM)

- Contribution to the development of the OGSE for the AIVT phases
- Contribution/help to the straylight studies
- Contribution to the Performance model of the flight LISA instrument
 - Estimation of the degradation of photoreceivers performances under the effect of space radiation environment exposure
 - Photoreceivers WG of the LISA Instrument Group (LIG)
 - Chairs: Gerhard Heinzel (AEI, Hanover) and Nicoleta Dinu-Jaeger (ARTEMIS/OCA, Nice)

Photoreceivers for the AIVT OGSE (1)

- MIFO/ZIFO design under progress (APC, ARTEMIS, CEA/IRFU, CPPM, LAM, SYRTE & CNES)
 - Main objective: Build OGSE, with optical metrology stability $\sim pm/\sqrt{Hz}$
 - Prepare the next OGSE for the MOSA AIVT phases
 - Characterize and validate the impact of test environment (temperature, vibrations, vacuum etc.)
 - Identify the main perturbing effects (polarization state, laser frequency & power stability, electronics noise, cross-talk etc.)

Photoreceivers need

- 9x Quadrant Photoreceivers (QPR)
 - Interferometric measurements & phase loop control
- 4x Single element photoreceivers (SEPR)
 - 4 Lasers power monitoring and intensity loop control

Nicoleta Dinu-Jaeger, ARTEMIS/OCA, LISA ARTEMIS activities, GdR OG, 25.06.2019

Photoreceivers for the AIVT OGSE (2)

Quadrant Photodiodes & Single element Photodiodes (InGaAs Technology, 1-2 mm diameter)

- Aim: Optical to electrical signal conversion in the LISA bandwidth (5-25 MHz)
- Preamplifier front end electronics (FEE)
 - Aim: amplify the electrical signal
- Mechanical housing

- (PD + FEE) metallic box
- Mounting structure of optical components in front of the PR (lens + polarizer)
- Interface plate with the Zerodur

Photodetectors (PD) specs definition

Quadrant Photodetectors (QPD)

Hamamatsu G6849-01 (G6849-9074, No glass window on package)

QPD Quantum efficiency @ 1064 nm	QE @ 1064 nm = 80% (Responsivity = 0.69 A/W)
QPD diameter	1 mm
QPD gap between segments	30 µm
QPD capacitance	25 pF (max 40 pF)/segment
QPD package	No window TO5 type package
Cut-off frequency	Typ. 120 MHz (min 80 MHz)

Single Element Photodetectors (SEPD)

Hamamatsu G12180-020A, No glass window on package

QPD Quantum efficiency @ 1064 nm	QE @ 1064 nm = 80% (Responsivity = 0.69 A/W)
QPD diameter	2 mm
QPD capacitance	Typ. 250 pF (max 800 pF)/segment
QPD package	No window TQ5 type package
Cut-off frequency	Typ 13 MHz (min 4 MHz)

16 Front End Electronics (FEE) @ ARTEMIS

JP. Coulon

FEE-QPD

- 1st prototype designed and manufactured
 - Pre-amplifier sensing similar to AEL, cascade transistors
 - First stage amplification
 - 2-discrete transistors (10 kΩ transimpedance)
 - Second stage amplification
 - Operational amplifier AD8038: gain 5.25
 - **-** Total gain: 52.6 kΩ

One channel pre-amplifier design

Provide a service of the service of

17 Mechanical support (MS) @ ARTEMIS

MS-QPR

- QPD pins soldered on the PCB of the FEE
- QPD + FEE in a home-made metallic box (Lxlxh = 52x38.5x80) mm
- Lent + polarizer + clip in front of each QPR on a dedicated MS
- Interface plate between MS-QPR and Zerodur
- MS-QPR + alignment tools design under progress
- 1st prototype to be manufactured in September

Photodiode characterization @ CPPM

- Electro-optical characterization of SEPD and QPD
- Vacuum chamber with chiller
 - 1064 nm fiber laser source
 - Beam focused on < 20 microns</p>
 - Control of the photodiode temperature

Parameters

- I-V, C-V, impedance in the 0-50MHz range
- Dark current, QE
- Spatial response homogeneity (intra- inter- segments)
- Crosstalk
- Thermal coupling (-10 +30°C)

CPPM team: E. Kajfasz, A. Secroun, J. Royon, P. Lagier

Photoreceivers characterization @ ARTEMIS

- 1st step: Electro-optical characterization in air conditions
 - 1064 nm fiber laser source
 - Parameters
 - Frequency response (amplitude, phase) using a modulated optical signal (5-25 MHz)
 - Inter & intra-segments spatial uniformity of the frequency response (beam focused on ~30 microns)
 - Intra-segments cross-talk
 - Power to phase coupling @ 1064nm & UV (Incoherent straylight)
 - Set-up build and calibration starting from July 2019
- 2nd step: Electro-optical characterization under vacuum and T control
 - Thermal coupling coefficients
 - Amplitude and phase stability with temperature

Contribution to Performance model - studies of photoreceivers performances under proton irradiations

21 LISA Radiation environment: Solar Protons

ESA-L3-EST-MIS-SP-001, ESA-TEC-SP-006666, 31/08/2017

- Solar proton fluencies estimated with 95% confidence for 6.5 and 12.5 years extended LISA mission
 - LISA launch 2034, including the maxima phase of the solar cycle 26
 - Solar cycle 26: starts March 2031, maxima June 2036, end 2041
 - Solar cycle 26: trend of decreasing solar activity (A.K. Singh, A. Bhargawa, Astrophys. Space Sci, 2019)

Proton beam facility at Centre Antoine Lacassagne (CAL), Nice, France

R. Trimaud, J. Hérault

23 **Protons facilities overview**

Centre de lutte contre le cancer de nice

Isochronous cyclotron P 65 MeV, Juin 1991 (MEDICYC)

Super-conducting synchrocyclotron IBA PROTEUS ONE, P226 MeV, September 2016

24 Protons and photon beams characteristics @ CAL IMPT

Isochronous cyclotron (Medicyc)

Proton BE		
Time structure	Macrostructure (ns)	Microstructure (ns)
	continuous	5 / 40 (25 MHz)
Dose rate	Minimum (Gy.min ⁻¹)	Maximum (Gy.min ⁻¹)
	1 (lower possible if adapted detection system)	100
Field size	Minimum (φ mm)	Maximum (ϕ mm)
	1	60
Energies	Min (MeV)	Max (MeV)
	0.1	65

X-rays 6 MV (~1 MeV)		
Dose rate	Minimum (Gy.min ⁻¹)	Maximum (Gy.min ⁻¹)
	2	-
Field size	Minimum (¢ mm)	Maximum (¢ mm)
	5	60

Super-conducting synchrocyclotron (Proteus)

Proton HE		
Time structure	Macrostructure (ms)	Microstructure (ns)
	1	1.5 (63 MHz)
Dose rate	Minimum (Gy.min ⁻¹)	Maximum (Gy.min ⁻¹)
	2	-
Field size	Minimum (mm ²)	Maximum (mm ²)
	100x100	200x250
Energies	Min (MeV)	Max (MeV)
	100 (lower with range shifter)	226

25 Organigram - LISA ARTEMIS team @ Phase A

Group 1

Additional slides

One channel pre-amplifier design

